1. Геохимическая работа живого вещества на примере круговорота азота, анизотропогенное вмешательство в круговорот 3



жүктеу 306.95 Kb.
Дата27.10.2018
өлшемі306.95 Kb.
түріЗадача


CОДЕРЖАНИЕ



1. Геохимическая работа живого вещества на примере круговорота азота, анизотропогенное вмешательство в круговорот 3

2. Всемирная стратегия охраны природы на 90-е г. XX столетия 26

3. Задача 31

Список литературы 33





1. Геохимическая работа живого вещества на примере круговорота азота, анизотропогенное вмешательство в круговорот

Более 99 % энергии, поступающей на поверхность Земли, составляет излучение Солнца. Эта энергия растрачивается в громадном большинстве физических и химических процессов в гидросфере, атмосфере и литосфере: перемешивании воздушных и водных масс, выветривании, испарении, перераспределении веществ, растворении минералов, поглощении и выделении газов и т. п.

На Земле существует один-единственный процесс, при котором энергия солнечного излучения не только тратится и перераспределяется, но и связывается, запасается на очень длительное время. Этот процесс – создание органического вещества в ходе фотосинтеза. Сжигая в топках каменный уголь, мы освобождаем и используем солнечную энергию, запасенную растительностью сотни миллионов лет назад.

Основная планетарная функция живого вещества на Земле заключается, таким образом, в связывании и запасании солнечной энергии, которая затем идет на поддержание множества других геохимических процессов в биосфере.

За время существования жизни на Земле живое вещество превратило в химическую работу огромное количество солнечной энергии. Значительная часть ее в ходе геологической истории накопилась в связанном виде. Для современной биосферы характерны залежи угля и других органических веществ, образовавшихся в палеозое, мезозое и кайнозое.

В биосфере в результате жизнедеятельности микроорганизмов в больших масштабах осуществляются такие химические процессы, как окисление и восстановление элементов с переменной валентностью (азот, сера, железо, марганец и др.). Геологические результаты деятельности этих организмов проявляются в образовании осадочных месторождений серы, образовании в анаэробных условиях залежей сульфидов металлов, а в аэробных – окисление их и перевод в растворимое состояние, возникновение железных и железомарганцевых руд.

За счет жизнедеятельности огромного числа гетеротрофов, в основном грибов, животных и микроорганизмов, происходит гигантская, в масштабах всей Земли, работа по разложению органических остатков. При деструкции органической массы протекают два параллельных процесса: минерализации и образования почвенного гумуса со значительным запасом энергии. Гумус – это основа почвенного плодородия. Его разложение протекает в дальнейшем очень медленно, под влиянием определенной, автохтонной микрофлоры почв, чем достигается постоянство в обеспечении растений элементами минерального питания.

Природные воды, обогащенные продуктами минерализации, становятся химически высокоактивными и разрушают горные породы.

Живые организмы создали и поддерживают газовый состав современной атмосферы. Некоторая несбалансированность процессов синтеза и разложения органических веществ в биосфере определила кислородный режим современной воздушной оболочки Земли.

Кислород атмосферы накоплен за счет фотосинтеза. Единственный источник абиогенного поступления свободного кислорода – фотодиссоциация молекул воды в верхних слоях атмосферы – очень незначителен.

Выделенный растениями кислород вновь используется на окисление углерода при минерализации органического вещества и дыхании организмов, но так как часть органических веществ захоранивается в осадочных породах, то эквивалентное количество О2 остается в атмосфере. Значительная часть его идет на окисление минеральных веществ. Весь наличный запас свободного кислорода в атмосфере оценивается в 1,6 · 1015 г, зеленые растения могут воссоздать его за 10 тыс. лет.

В верхних слоях тропосферы под влиянием ультрафиолетового излучения из кислорода образуется озон. Существование озонового экрана также результат деятельности живого вещества, которое, по выражению В. И. Вернадского, «как бы само создает себе область жизни».

Углекислый газ поступает в атмосферу за счет дыхания всех организмов. Второй, менее мощный его источник – выделение по трещинам земной коры из осадочных пород за счет химических процессов, совершающихся под действием высоких температур. Он также имеет биогенное происхождение. Часть углекислого газа поступает в атмосферу из абиогенного источника – непосредственно из мантии Земли при вулканических извержениях. Эта часть лишь 0,01 % от СО2, выделенного живыми организмами. Расходуется углекислый газ в процессах органического синтеза, а также на выветривание горных пород и образование карбонатов. [2]

Азот атмосферы химически инертен, но и он участвует в процессах синтеза и распада органического вещества. Азот усваивают из атмосферы многие прокариотические организмы – азотфиксаторы. После гибели бактерий азот переходит в доступные растениям соединения и включается в цепи питания и разложения.

К газам органического происхождения относятся также сероводород, метан и множество других летучих соединений, создаваемых живым веществом. За один день, например, 1 га можжевелового леса может выделить в атмосферу до 30 кг летучих веществ – фитонцидов.

Продуцируя и потребляя газообразные вещества, организмы биосферы поддерживают постоянство состава воздушной оболочки Земли.

Живое вещество перераспределяет атомы в биосфере. Многие организмы обладают способностью накапливать, концентрировать в себе определенные элементы, несмотря на часто ничтожное содержание их в окружающей среде. Например, литотамниевые водоросли накапливают в своих телах до 10 % магния, в раковинах брахиопод содержится около 20 % фосфора, в серных бактериях – до 10 % серы. Многие организмы концентрируют кальций, кремний, натрий, алюминий, иод и т. д. Отмирая и захораниваясь в массе, они образуют скопления этих веществ. Возникают залежи таких соединений, как известняки, бокситы, фосфориты, осадочная железная руда и др. Многие из них человек использует как полезные ископаемые.

Живое вещество активно участвует также в грандиозных процессах перемещения, миграции атомов в биосфере через систему больших и малых круговоротов.

В круговороте соединений азота чрезвычайно большую роль играют микроорганизмы: азотфиксаторы, нитрификаторы, денитрификаторы. Все остальные организмы влияют на цикл азота только после ассимиляции его в состав своих клеток.

Бобовые и представители некоторых родов других сосудистых растений, например ольха (Alnus), казуарина (Casuarina), араукария (Araucaria), гинкго (Ginkgo), лох (Eleganus), фиксируют азот только с помощью бактерий-симбионтов. Подобным же образом некоторые лишайники фиксируют азот с помощью симбиотических сине-зеленых водорослей.

Таким образом, биологическая фиксация молекулярного азота свободноживущими и симбиотическими микроорганизмами происходит и в автотрофном, и гетеротрофном ярусах экосистем.

Для круговорота азота необходим микроэлемент молибден, входящий в состав системы азотфиксирующих ферментов. В некоторых условиях молибден служит лимитирующим фактором. Фиксировать азот способны лишь немногие роды микроорганизмов, весьма широко распространенных в природе: свободноживущие аэробные бактерии рода азотобактер (Azotobacter) и анаэробные виды рода клостридиум (Clostridium); симбиотические клубеньковые бактерии бобовых растений (Rhizobium); сине-зеленые водоросли: виды родов анабена (Anabaena) и носток (Nostoc). Азот фиксируют также пурпурные и зеленые фотосинтезирующие бактерии, различные почвенные бактерии.

Общее количество азота в атмосфере оценивается приблизительно в 3,8∙1015 т., тогда как в водах Мирового океана – в 2,0∙1013 т. Азотфиксирующие организмы суши ежегодно улавливают около 4,4∙109 т., а в водной среде ежегодная биологическая фиксация составляет 1,0∙109 т. Надо отметить, что количество ежегодно фиксируемого живыми организмами азота в океане и на суше различается лишь в 4 с небольшим раза. В то же время содержание азота в наземных организмах (моментальная масса) составляет 1,22∙1010 т. а в донных организмах – всего 0,025∙1010 т. (в 50 раз меньше). В биосфере в целом фиксация азота из воздуха составляет в среднем за год 140-700 мг/ м2. В основном это биологическая фиксация, а лишь небольшое количество азота (в умеренных областях не более 35 мг/ м2 в год) фиксируется в результате электрических разрядов и фотохимических процессов.

Круговорот азота в биосфере




В фотической зоне небольших озер фиксация азота происходит со скоростью 1-50 мкг/ л в день; высокая интенсивность фиксации отмечена также в некоторых загрязненных озерах с множеством сине-зеленых водорослей. В океане, где продуктивность ниже, интенсивность фиксации азота в расчете на 1 м2 меньше, чем на суше, однако общее количество фиксированного азота является значительным и весьма важным для глобального круговорота.

В круговороте азота из огромного запаса этого элемента в атмосфере и осадочной оболочке литосферы принимает участие только фиксированный азот, усваиваемый живыми организмами суши и океана. В эту категорию азота обменного фонда входят: азот годичной продукции биомассы, азот биологической фиксации бактериями и другими организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный.

На огромных массивах, где деятельность человека почти отсутствует, растения берут необходимый им азот из вносимого в почву азота извне (нитратов с дождями, аммиака из воздуха), из возвращаемого в почву азота (остатков животных, растений, экскрементов животных), а также из разнообразных азотфиксирующих организмов. Особое внимание привлекают несимбиотические свободноживущие так называемые олигонитрофильные микроорганизмы, способные расти при ничтожно малом содержании связанного азота в среде. Многие исследователи находят их в почве и ризосфере в довольно больших количествах.

Азот – один из элементов, отделившихся в газовой фазе уже на этапе формирования Земли в процессе ударной дегазации. В дальнейшем выделение газообразных соединений азота из недр Земли продолжалось при извержении вулканов, выносе гидротерм и газовых струй. Газообразный молекулярный азот благодаря химической инертности является наиболее устойчивой формой нахождения этого элемента. По этой причине N2 изначально аккумулировался в атмосфере, а не концентрировался в форме растворенных соединений в воде океана, как хлор, или в форме нерастворимых соединений в осадках океана, как углерод в составе карбонатных толщ.

Основная масса азота в форме N2 сосредоточена в атмосфере, где содержится 3 866 000×109 т этого элемента. Часть газа N2 растворена в воде Мирового океана. При равновесии газов атмосферы с водой океана в последнем может быть растворено от 115000 ×109 до 200 000 ×109 т N2.

В океане азот присутствует также в виде растворенных ионов, в составе растворенного и дисперсно-взвешенного органического вещества. Масса азота, находящегося в форме растворенных ионов [NH4]+, [NO2]- и [NO3]-, составляет 685 ×109 т.

Среднее содержание азота в живом веществе Мировой суши, массу которого в основном образуют зеленые растения, разные авторы определяют от 0,6 % (Базилевич Н.И., 1974) до 3 % сухой биомассы (Боуэн X., 1966). Значительную часть биомассы растений суши представляют стволы деревьев, состоящие преимущественно из целлюлозы и лигнина. По этой причине мы принимаем для расчетов среднее содержание азота в сухой биомассе растений равным 1 % (возможно, это значение несколько завышено). В то же время в годовом приросте растительности суши, состоящем из вегетирующих органов растений, значительно больше белков, чем в фитомассе в целом. Поэтому среднее содержание азота в годовом приросте мы принимаем равным 2 %, что соответствует данным Е. А. Романкевича (1988). С учетом изложенного можно считать, что в биомассе растений Мировой суши до ее нарушения хозяйственной деятельностью человека содержалось порядка 25 • 109т азота. В органическом веществе педосферы среднее содержание азота близко к 3 %, а общая масса элемента около 200 • 109 т. Значительно меньше в педосфере солевого, главным образом, нитратного азота, количество которого пока не поддается оценке.

Концентрация азота в фотосинтезирующих организмах океана оценивается от 4,5 % (Базилевич Н.И., 1974) до 8,2% (Романкевич Е.А., 1988), в среднем 6% сухого органического вещества, а количество азота равно 0,20×109 т. В организмах-консументах при средней концентрации азота 7 % его масса составляет 0,32×109 т. Общее количество азота в организмах океана равно 0,52×109 т. В растворенном органическом веществе океана при концентрации в нем азота 6% сухой массы (Виноградов А. П., 1987) содержится 252×109 т азота, во взвешенном органическом веществе – примерно в 10 раз меньше. Общее количество азота в мертвом органическом веществе океана составляет около 0,3×1012 т.

В гранитном слое земной коры концентрация азота составляет 0,002 %, общая масса 165×1012 т. В осадочной оболочке азот фиксирован в органическом веществе. Содержание последнего около 30×1015 т, что соответствует 15×1015 т углерода. Согласно данным немецкого геохимика Э. Дегенса (1967), концентрация азота в рассеянном органическом вещества близка к 2 %. На этом основании можно предположить, что масса азота в осадочной оболочке составляет примерно 600×1012 т. Как видно из приведенных данных, в осадочной оболочке азота больше в 3, а в атмосфере в 23 раза по сравнению с гранитным слоем литосферы. Следовательно, суммарное количество азота, содержащееся в биосфере, нельзя объяснить извлечением элемента из разрушавшегося гранитного слоя. Очевидно, масса азота в биосфере обусловлена его поступлением путем дегазации. Количество азота, поступающего в газовой форме в атмосферу из недр Земли, в настоящее время близко к 1×106 т/год. В геологическом прошлом это количество, возможно, было больше. Распределение азота в биосфере приводится ниже:



Резервуар Масса, 109 т

Атмосфера, N2 ............................................................................3870000

Мировая суша:

биомасса растительности (до воздействия человека)...................... 25

органическое вещество педосферы................................................. 200

Океан:


биомасса фотосинтетиков............................................................... 0,20

биомасса консументов..................................................................... 0,32

органическое вещество (растворенное и взвешенное).................. 300

растворенные ионы [МО3]-............................................................. 685

растворенный газ N2...................................................................... 20000

Земная кора:

осадочная оболочка..................................................................... 600 000

гранитный слой континентального блока.................................. 165000


Главным поставщиком азота в биосферу являются недра Земли, основным накопителем – атмосфера, точнее – тропосфера. Но атмосферу не следует рассматривать как закрытый резервуар, куда на протяжении 4 млрд лет поступают и хранятся газообразные соединения азота. Состав атмосферного газа непрерывно обновляется благодаря циклическим процессам массообме-на, связывающим атмосферу с Мировой сушей, педосферой, океаном и его осадками.

Современная структура глобального цикла массообмена азота весьма сложная и состоит из нескольких взаимосвязанных круговоротов. Генеральная направленность цикла заключается в миграции масс азота между главным накопителем – атмосферой и другими, значительно меньшими резервуарами – педосферой, живым веществом и океаном.

Один из круговоротов обусловлен фотохимическими реакциями в тропосфере. Наряду с N2 в атмосферу систематически поступают другие газообразные соединения азота: NH3, N2O, NO, NO2. Их накопления не происходит благодаря фотохимическим реакциям. Фотохимическая диссоциация паров воды с последующей диссипацией водорода способствует присутствию сильного окислителя (ОН)-. Радикал (ОН) соединяется с NO и NO2, образуя азотистую и азотную кислоты, а в дальнейшем их соли – нитриты и нитраты. Наряду с оксидами азота в атмосфере присутствует восстановленное соединение азота – аммиак. В кислородсодержащей атмосфере он реагирует с оксидами серы и образует кислый сульфат аммония NH4HSO4. Это соединение, так же как нитриты и нитраты, легко вымывается атмосферными осадками.

Первичный миграционный цикл азота, вероятно, сводился фотохимической трансформации всех газообразных соединений азота (кроме N2) в окисленные растворимые формы с их после дующим удалением из атмосферы. На заре геологической истории Земли в этот цикл включилась деятельность самой древней группы живых организмов – бактерий, которая постепенно глубоко изменила всю структуру глобального массообмена азота.

В настоящее время фотохимические реакции продолжают участвовать в выведении азота из атмосферы, хотя приоритетное значение в этом процессе получила биогеохимическая деятельность бактерий. Замечательное свойство азота – его сильно выраженная поливалентность.

Это обстоятельство имеет весьма важное значение для биогеохимических процессов. Переводя азот из одной формы в другую, меняя в разных условиях его валентность, организмы получают энергию для своей жизнедеятельности. Возможно, что не без влияния этого обстоятельства азот является необходимой составной частью белков.

Азот по праву называют элементом жизни, хотя лингвистически это звучит странно (азот буквально означает «безжизненный»). Присутствие доступных для высших растений форм азота в педосфере обусловливает биомассу растений, т. е. по существу массу живого вещества Земли. Оригинальность ситуации заключается в том, что основная часть этого элемента, находящаяся в атмосфере в химически неактивной форме N2, недоступна для главных продуцентов – зеленых растений суши. Но химическая неактивность молекулярного азота не означает его геохимической стабильности. Существуют некоторые виды бактерий, способные активизировать молекулярный азот и связывать его в химические соединения. Этот процесс получил название фиксации азота.

В организмах большая часть азота присутствует в форме соединений, в состав которых входит аминогруппа NH2, или в виде аммония. В процессе биохимической фиксации молекула N2 расщепляется и атомы азота соединяются с атомами водорода с образованием аммиака. Этот процесс протекает с помощью фермента нитрогеназы. Аммиак и ион [NH4]+ могут поглощаться корнями растений и входить в состав аминокислот.

Фиксацию азота осуществляют отдельные специализированные бактерии семейства Azotobacteracea и в определенных условиях – сине-зеленые водоросли. Наиболее продуктивны азотфиксирующие клубеньковые бактерии, образующие симбиозы с бобовыми растениями. Масса азота, фиксируемая из воздуха почвенными бактериями до начала хозяйственной деятельности человека, оценивается разными авторами от (30 – 40)×106 т/год. В настоящее время к этому добавляется искусственная биологическая фиксация, получаемая при помощи бобовых сельскохозяйственных растений (около 20×106 т/год), а также промышленная фиксация азота из воздуха, которая превысила 60×106 т/год.

До вмешательства человека в глобальный цикл азота количество фиксируемого азота бактериями примерно балансировалось его освобождением из отмершего органического вещества и выделением в виде газообразных соединений в атмосферу.

Это обеспечивается взаимосвязанными бактериальными процессами, происходящими в почве. Первым из них является аммонификация – микробиологическая трансформация азота органических соединений (главным образом аминокислот) в ион аммония или аммиак. Процесс разложения органического вещества протекает в аэробных условиях и сопровождается активным образованием СО2.

Аммоний подвергается следующему процессу трансформации. В аэробных условиях происходит нитрификация – преобразование аммиака в нитритный ион одними бактериями, а затем в нитратный другими. В анаэробных условиях развиваются процессы денитрификации, в результате которых нитраты и нитриты восстанавливаются до закиси азота или до газообразного молекулярного азота.

В итоге молекулярный азот после разнообразных биохимических превращений вновь возвращается в атмосферу. Количественная оценка годовой продукции азота процессами бактериальной денитрификации сильно расходится: от (40 – 50) ×106 до (350 – 400)×106 т/год.

Масса азота, фиксируемого почвенными бактериями, оценивается в (44 – 200)×106 т/год. Продукция процессов денитрификации, которая была до вмешательства человека сбалансирована с продукцией бактериальной фиксации, в настоящее время, вероятно, несколько превышает последнюю.

Рассмотренный цикл – фиксация молекулярного азота –аммонификация мертвого органического вещества – нитрификация– денитрификация имеет наиболее важное значение для глобального массообмена азота, так как этот цикл обеспечивает основной поток азота из его главного резервуара – атмосферы.

Кроме того, из атмосферы выводится определенное количество N2, окисляемого в результате электрических разрядов и затем вымываемого в виде иона [NO3]~, но это количество значительно меньше массы биологически фиксируемого азота и составляет (10 – 40) ×106т/год.

Круговорот азота, обусловленный его бактериальной фиксацией и дальнейшей трансформацией, тесно связан с другим мощным круговоротом этого элемента. Крупные массы нитратного и аммонийного азота захватываются из педосферы в биологический круговорот, происходящий благодаря деятельности фотосинтезирующих растений и микроорганизмов, разрушающих растительные остатки.

Принимая среднюю концентрацию азота в годовом приросте растительности суши равной 2 %, можно полагать, что в биологический круговорот между почвой и растительностью до вмешательства человека вовлекалось 3,5 • 109 т/год азота. Большая часть этой массы возвращается в почву в составе растительных остатков и включается в микробиологические процессы, в результате которых органическое вещество разрушается, азот переходит в аммоний и нитриты, доступные для растений, и вновь захватывается растениями.

Некоторую часть азота, связанного в растениях, захватывают животные, которые снова возвращают ее в почву.

Часть азота выводится из биологического круговорота и аккумулируется в мертвом органическом веществе. Этот своеобразный запас азота в лесных подстилках, торфе и почвенном гумусе постоянно поддерживается в педосфере и свидетельствует о некоторой заторможенности биологического круговорота на суше. Существенный вклад в поступление оксидов азота в атмосферу вносят лесные пожары, благодаря которым в атмосферу попадает от 10×106 до 200×10б т/год азота.

В океане происходят те же процессы трансформации и миграции соединений азота, что и на суше, но соотношение этих процессов иное. Жизненные циклы фотосинтезирующих организмов океана протекают значительно быстрее, чем на суше. По этой причине через фотосинтезируюшие организмы океана на протяжении года проходят значительно большие количества азота. Кроме того, концентрация азота в морских организмах выше, чем в наземных, а именно 6 – 8 % сухой биомассы.

Продукция фотосинтетиков океана близка к 100- 109 т/год сухой биомассы, следовательно, через систему биологического круговорота фотосинтезирующих организмов проходит 6 • 109 т/год азота. В то же время биологическая фиксация азота в океане в 2 раза, а денитрификация почти на порядок меньше, чем на суше.

Массы, мигрирующие под влиянием биологических процессов, занимают главное место в глобальном массообмене азота. Тем не менее определенное количество рассматриваемого элемента мигрирует другими путями. [5]

Концентрация неорганического (нитратного и аммонийного) азота в дождевых водах на территориях Северного полушария, свободных от влияния промышленного или сельскохозяйственного производства, близка к 0,5 мг/л. Следовательно, на поверхность Мировой суши до начала активной хозяйственной деятельности человечества поступало с атмосферными осадками примерно 50 ×106 т/год азота в виде водорастворимых неорганических соединений.

В настоящее время количество водорастворимых соединений азота, поступающих на сушу из атмосферы, значительно (около 1,5 раз) возросло за счет эмиссии азота индустрией и развеиванием вносимых в почву азотных удобрений.

Масса азота, ежегодно вымываемая атмосферными осадками, восполняется образованием в тропосфере растворимых соединений азота за счет трансформации его газообразных соединений почвенно-микробиологического происхождения и частично соединений, поступающих в результате дегазации Земли.

Значительная масса азота захватывается поверхностными водами из педосферы и выносится с речным стоком в океан. Средняя концентрация ионов [NO3]- в незагрязненных речных водах 1 мг/л (Ливингстон Д., 1963) или в пересчете на азот 0,225 мг/л, а вынос неорганического азота с суши равен 9,2×106 т/год. Азот мигрирует в речных водах также в составе растворенного и взвешенного органического вещества.

Среднее содержание первого в воде рек близко к 7 мг/л, второго – 5 мг/л. Средняя концентрация азота в органическом веществе речной воды 3 %, следовательно, годовой вынос азота в составе растворенного органического вещества равен 8,6×106т, в составе взвешенного – 6,1×106 т. Суммарный вынос азота оценивается в 24×106 т/год.

Некоторые исследователи считают, что в речном стоке средняя концентрация неорганического азота 0,5 мг/л, органического – 1 мг/л. Исходя из этих данных, суммарный вынос азота реками с Мировой суши оценивается в 61×106 т/год.

Природная концентрация растворимых неорганических соединений азота в атмосферных осадках над акваторией Мира, по-видимому, равна 0,2 мг/л азота. Соответственно на поверхность океана выпадает около 82×106 т азота в год.

Рассматривая эволюцию глобального массообмена азота во времени, можно предположить, что изначально цикл массообмена имел простую структуру. Цикл был обусловлен поступлением дегазируемых соединений азота, которые в тропосфере под воздействием фотохимических реакций трансформировались в водорастворимые нитраты и сульфат аммония и затем вымывались атмосферными осадками. По мере того как в этот процесс встраивалась деятельность живых организмов (бактерий), цикл усложнялся и постепенно включил в себя все звенья микробиологического круговорота: фиксация молекулярного азота–аммонификация– нитрофикация–денитрофикация.

Указанные микробиологические процессы создали предпосылки для появления наземных растений с системой почвенного питания. Очевидно, древние бактериальные биогеоценозы, приуроченные к мелководным и заболоченным илистым отложениям, были прообразом современных почв. В дальнейшем, с появлением на поверхности суши наземной растительности возник «большой» биологический круговорот азота и началось формирование педосферы как главного регулятора глобального цикла азота. На основе фотосинтезируе-мого органического вещества образовался биологический круговорот азота с участием животных.

Азот не образует нерастворимых соединений, которые могли бы выпадать в осадки Мирового океана. Зоогенные накопления нитратов натрия (гуано) невелики. Основная часть поступающего в осадочную оболочку азота связана с органическим веществом. Исходя из данных А. Б. Ронова (1976) можно предполагать, что ежегодно в осадки удаляется около 10×10б т сухого органического углерода, что соответствует примерно 20×10б т органического вещества.

Если принять в этом веществе концентрацию азота как среднее между содержанием азота в растениях суши и океана, т.е. равное 5 %, то можно ориентировочно подсчитать, что до начала активной производственной деятельности человечества в осадки уходило около (1 – 2)×106 т/год азота. Это количество, по-видимому, не отличается сильно от массы азота, дегазируемого из недр Земли.

Значительные массы молекулярного азота, как и других газов тропосферы, участвуют в физическом газовом обмене с Мировым океаном. В зависимости от физико-географических условий в морской воде может быть растворено от 8,4 до 14,5 мг/л N2. Согласно данным А.П.Виноградова (1967), в океанической воде содержится 13 см3 N2, а во всем Мировом океане – 18×106 км3, т.е. почти 1,5 % объема океана. Это огромное количество азота находится в состоянии динамического равновесия с азотом атмосферы. В воде океана растворены и другие газообразные соединения азота, в первую очередь NH3, но его содержание и миграция пока не поддаются оценке.

Цикл азота претерпел сильную деформацию от хозяйственной деятельности людей. Наиболее значительное изменение в структуре глобального массообмена азота связано с индустриальной фиксацией молекулярного азота из атмосферы, производством на этой основе азотных удобрений и внесением их в обрабатываемые почвы.

Масса ежегодно фиксируемого промышленностью азота превышает 60×106 т. Не менее существенно искусственное усиление биологической фиксации азота путем широкого использования в сельском хозяйстве бобовых культур, находящихся в симбиозе с азотфиксирующими бактериями. В 1970 г. этим путем дополнительно связывалось около 15×106 т азота; в настоящее время это количество возросло.

Промышленная фиксация атмосферного азота – наиболее сильное вмешательство человека в систему природных глобальных циклов массообмена химических элементов в биосфере. Кроме того, значительное количество азота (около 40×06 т/год) в форме оксидов поступает в атмосферу с выбросами промышленных предприятий и транспорта, образующимися при сжигании минерального топлива, а также в гидросферу с бытовыми и промышленными стоками. Влияние загрязнения на биогеохимические процессы рассмотрено ниже, в специальной главе.

Следует отметить, что изучение массообмена азота связано с большими трудностями, поэтому количественные оценки отдельных миграционных потоков и круговоротов азота, выполненные разными учеными, сильно различаются. Диапазон данных отражен в табл. 1, где представлены главные особенности массообмена азота в биосфере.

Таблица 1



Миграция масс азота в биосфере

Процессы массообмена

Масса 106 т/год

Мировая суша

Круговорот высших растений (фотосинтез – деструкция органического вещества)

3400*

Бактериальный круговорот:

азотфиксация

денитрификация

40-200


от 40-50 до 350-400

Круговорот азота с участием животных

90-190 '

Поступление в атмосферу при пожарах леса

10-200

Вымывание из атмосферы

50

Вынос с речным стоком

24-61

Дегазация из недр Земли

1-9

Океан

Круговорот фотосинтетиков планктона

6000

Бактериальный круговорот:

азотфиксация

денитрификация

1-20


0-330

Вымывание из атмосферы

82

Удаление в осадки

1-9

Техногенный вклад в миграцию масс

Индустриальная азотфиксация

60

Эмиссия азота в окружающую среду с промышленными и бытовыми отходами

10-20

*С учетом сельскохозяйственных культур.

Общие черты циклов и распределения масс дегазированных элементов

Циклы массообмена углерода, азота, серы, хлора имеют общие черты. Во-первых, эти циклы с момента образования поддерживаются поступлением масс газов. По нашим расчетам, на протяжении геологической истории из недр Земли было дегазировано (1015 т): углерода – 96,04; хлора – 33,0; серы – 10,5; азота – 4,47; а также 1600×1015 т воды (порядки цифр те же, что и полученные другими авторами, но числовые значения различаются).

Во-вторых, элементы, находящиеся на поверхности Земли в виде газов, имеют определяющее значение для живых организмов, которые в основном состоят из этих элементов. Само существование жизни как планетарного явления было бы невозможно без постоянного поступления в окружающую среду газов. Факты свидетельствуют, что жизнь и процессы, протекающие в недрах Земли, тесно связаны. Вся история развития жизни определенным образом отражает эндогенные процессы. Ярким примером служит ранее рассмотренная зависимость продукции биологических процессов, в частности, массы фотосинтезируемого органического вещества от количества выделявшегося вулканического СО2.

В-третьих, процессы глобального массообмена дегазируемых элементов глубоко преобразованы деятельностью организмов. Организмы, благодаря их склонности к адаптации и быстрой изменчивости, медленно, но неуклонно изменяли геохимию окружающей среды. При этом первичные абиогенные круговороты постепенно трансформировались в биогеохимические циклы со сложной структурой.

На фоне отмеченных общих черт глобальные циклы массообмена каждого элемента ясно индивидуализированы. Элементы-газы активно участвуют в биологических процессах, вовлекаются и выводятся из жизненных циклов. При этом происходит изменение форм нахождения элементов, что влечет за собой закономерное перераспределение их масс в биосфере.

Как следует из данных табл. 7.5, 99,9 % всей массы дегазированного в виде СО2 углерода было связано в продуктах жизнедеятельности организмов: 15,6 % в форме рассеянного в осадочной оболочке органического вещества и 84,3 % в составе биогенных карбонатов. Одновременно происходил процесс расщепления молекул жидкой воды и выделения свободного кислорода, что постепенно коренным образом изменило геохимическое состояние наружной оболочки Земли и превратило ее в современную биосферу.

Значительная часть всей массы серы также находится в осадочных отложениях, хотя в процентном отношении меньше, чем это имеет место для масс углерода. В осадочной оболочке сосредоточено 88,6 % всей массы серы, а 11,4 % содержится в океане в форме растворенных сульфатов. В осадочной оболочке сульфатная сера (55,9%) преобладает над сульфидной (44,1%). Таким образом, окисленные формы серы доминируют в биосфере.

Формы нахождения хлора в меньшей мере, по сравнению с другими элементами-газами, подверглись биогеохимической трансформации. Большая часть массы этого элемента (80,3 %) аккумулирована в форме ионов С1~ в Мировом океане и 19,7 % – в осадочной оболочке.

Основная часть азота благодаря функционированию системы биологических круговоротов находится в атмосфере (86,5 %), а в осадочной оболочке – лишь 13,4 %.

В заключение отметим: несмотря на то, что деятельность организмов обусловила существующее распределение масс дегазированных химических элементов, в живом веществе содержится лишь ничтожная часть – миллионные доли всей массы каждого из этих элементов, находящейся в биосфере. Следовательно, живое вещество играет роль не резервуара, а активного геохимического сепаратора элементов. Биогеохимическое фракционирование распространяется не только на элементы, но частично и на их изотопы.

Компоненты живой клетки и внеклеточные метаболиты, как правило, обогащаются легкими изотопами углерода и серы, а остаточные продукты – тяжелыми. [4]

Таблица 2

Распределение масс химических элементов, поступивших в биосферу в результате дегазации мантии


Резервуар

Масса элементов, 109 т

С

N

S

С1

Атмосфера

Мировая суша:

растительность

органическое вещество педосферы

Океан:

живые организмы



растворенное органическое вещество

растворенные неорганические ионы

Осадочная оболочка


700
1150

2550
4

2100
38500
96000000


3 866 000
25

200
0,52

300
685
600000


0,001
8,5

25
0,15


1200000
93000000



5,0

0,5
0,03


26500000
6500000


Масса элемента в биосфере, всего 1 • 1015 т

96,04

4,47

10,50

33,00



2. Всемирная стратегия охраны природы на 90-е г. XX столетия

Идею разработки Всемирной стратегии охраны природы впервые выдвинули в конце 70-х годов международные организации: Международный союз охраны природы и природных ресурсов (МСОП), Программа (комитет) ООН по окружающей среде (ЮНЕП), Всемирный фонд дикой природы (ВВФ). В ней фокусировалось внимание на опасности изменений в биосфере Земли и предлагалось предпринять ряд действенных мер по их смягчению.

В первом варианте Стратегии подчеркивалась необходимость учета экологических факторов в прогрессе социально-экономического развития и впервые был использован термин «устойчивое развитие» (sustainable development).

В конце 80-х годов стало очевидно, что необходим новый документ, учитывающий происходящие в мире изменения и опыт реализации первой Стратегии.

В 1986 г. в рамках МГБП была сформулирована цель Стратегии устойчивого развития – выработать основные пути и способы приспособления жизни к глобальным изменениям.

21 октября 1991 г. в Москве на конференции в Министерстве природопользования СССР была оглашена новая Всемирная стратегия охраны природы. В тот же день она принималась еще в 60 столицах мира. Этот обширный документ получил название: «Забота о Земле – стратегия устойчивого существования». Он появился в результате работ, проведенных в течение трех лет правительственными и неправительственными организациями, сотнями ученых и экспертов многих стран, в том числе российских ученых.

Работы выполнялись под эгидой международных организаций: МСОП, ЮНЕП, ВВФ. Документ состоит из трех частей. В первой части провозглашаются принципы устойчивого развития:

– уважение и забота о всем сущем на Земле;

– повышение качества жизни;

– сохранение жизнеспособности и разноообразия экосистем;

– предотвращение истощения невозобновляемых ресурсов;

– развитие в пределах потенциальной емкости экосистем;

– изменение сознания человека и стереотипов его поведения;

– поощрение социальной заинтересованности общества в сохранении среды обитания;

– выработка национальных концепций интеграции социально-экономического развития и охраны окружающей среды;

– достижение единства действий на мировом уровне.

Во второй и третьей частях документа даны рекомендации по претворению этих принципов в жизнь, изложена предполагаемая последовательность мероприятий.

Стратегия, не заменяя национальных программ охраны окружающей среды, дает основные ориентиры. Она ставит две основные задачи: выживание человечества и философское определение смысла жизни человека.

Выживание не является сугубо человеческой задачей, и в этом смысле человек мало отличается от других живых существ. Перспектива сохранения человека как вида сейчас уже достаточно проблематична. Данные палеонтологии указывают на то, что десятки миллионов видов живых существ вымерли на Земле. Среди них есть виды, принадлежавшие к человеческому роду. Ясно, что нужны большие усилия, для того чтобы нас не постигла та же участь.

Человек – довольно молодой вид в масштабах истории Земли: ему всего несколько миллионов лет. Сейчас человек находится в наиболее агрессивной стадии развития; он пытается осознать, что либо он впишется в биосферу, приспособится к ней, либо его постигнет судьба вымерших видов.

Среди принципов, провозглашенных в Стратегии, наиболее спорный и не совсем привычный для нас – регуляция численности населения (семейное планирование). У нас всегда поощрялось увеличение рождаемости, теперь надо будет регулировать численность населения не меньше, чем традиционное природопользование. Западная цивилизация не может существовать при большей плотности населения, чем достигнутая сейчас в развитых странах.

Большое внимание в Стратегии уделено «неистощительному использованию ресурсов». Только такой подход дает надежду на то, что мы сможем оставить что-то потомкам.

С решением многих проблем, поставленных в Стратегии, связано понятие экологической емкости природных экосистем. Стратегия гармонизации человеческой деятельности и природы заключается в том, чтобы лес оставался лесом, степь – степью, тундра – тундрой и т. п., несмотря на использование их ресурсов.

В Стратегии сформулировано понятие «духовности» как наличия целей, отличающихся от целей простого выживания.

Стратегия подсказывает необходимость интеграции и обеспечения единства действий различных государств независимо от социально-экономического устройства.

Для России следующие направления в контексте Стратегии являются наиболее актуальными:

– разработка общих принципов природоохранного законодательства;

– разработка общих принципов экологической этики;

– согласование общих подходов к оценке хозяйственных воздействий на природную среду и к экологическому нормированию хозяйственной деятельности;

– сохранение общей системы экологического мониторинга;

– экологическое прогнозирование для всех субъектов федерации;

– резервирование территорий для развития заповедной сети;

– разработка интегрированной системы мер для сохранения и рационального использования биологического разнообразия;

– экологический контроль внешнеэкономической деятельности, включая экологическую экспертизу импортируемых товаров и лицензирование экспорта биологических ресурсов;

– выполнение обязательств по международным договорам в области охраны окружающей среды.

Сейчас понятие устойчивого развития включает взаимосвязь экономических, социальных и экологических компонентов устойчивого представляет собой ориентир, выражающий основной экологический стереотип мышления конца XX века. Экологическая политика государств, в том числе России, ориентирована именно на идею устойчивого развития. В ООН создана Комиссия по устойчивому развитию. Специалисты полагают, что 90-е годы окажутся решающими в истории человечества. В ближайшее время – до конца века – станет ясно, удастся ли найти пути стабилизации ситуации или очевидное погружение в глобальную экологическую катастрофу продолжится в XXI веке. [1]



3. Задача


В нижнем течении Лены самки осетра приступают к размножению в 12-14 лет при средней длине тела 70 см. Наиболее старые особи доживают до 50 лет, вес их около 13 кг. На реке Алдан самки осетра начитают метать икру в 10-12 лет при средней длине тела 58 см. Самым старым особям не более 21 г. Промысловая мера, т.е. минимальный размер особи, разрешенных к отлову составляет 62 см. Что произойдет с алданской и Ленской популяцией осетра, если в результате интенсивной добычи будут вылавливаться все особи, крупнее этих размеров.
Решение:

Подрыв запасов осетра обусловил ряд факторов:

1) гибель огромного числа его молоди и неполовозрелых рыб в период морского лова;

2) низкая промысловая мера;

3) вылов большей части нерестовой популяции на путях подхода к реке;

4) чрезвычайно интенсивный промысел в осенний пик хода озимой нерестовой группы, когда в реку заходит до 70% нерестовой части популяции;

5) почти поголовное изъятие производителей раннего ярового осетра;

6) истребление браконьерами мигрирующих производителей позднего ярового и озимого осетра;

7) поголовный вылов курилкинским садком-ловушкой производителей, прошедших интенсивно облавливаемый участок нижней части промысловой зоны в осеннюю межень;

8) отсутствие свободных от рыболовства дней в разгар весеннего и осеннего хода осетра;

9) уничтожение отложений икры на нерестилищах лотовыми цепями во время буксировки барж;

10) выедание икры и истребление личинок и молоди рыбами – икроедами и хищниками;

11) чрезвычайно суровые условия зимовки в реке в результате ее загрязнения стоками промышленных предприятий и горюче-смазочными материалами судов, что неоднократно приводило к катастрофическим заморам в 1950–1973 гг.;

12) возрастающее безвозвратное водопотреблеиие;

13) выход из строя более 40% нерестилищ осетровых в результате их заиления, а также разработка перекатов с целью обеспечения судоходства и забора гальки из ложа реки;

14) гибель огромного количества личинок и молоди в водозаборных сооружениях, ирригационных системах и во время дноуглубительных работ на перекатах нерестовой зоны;

15) отсутствие рыбохозяйственной мелиорации и искусственного воспроизводства. [3]

Поэтому, если изначально, будут производить отлов рыбы, готовой к нересту, популяция осетра, на обоих реках может резко сократиться.




Список литературы

1. Бургеля Н. К., Мырлян Н. Ф. Геохимия и окружающая среда. – М.: Штиинца, 1985.

2. Горелов, А.А. Экология : учебник / А.А. Горелов .– М. : Академия, 2006 .

3. Гурова, Т.Ф. Основы экологии и рационального природопользования: учеб.пособие / Т.Ф. Гурова, Л.В. Назаренко .– 2-е изд., испр. – М. : ОНИКС, 2007 .

4. Добровольский В. В. Основы биогеохимии: Учебник для студ. высш. учеб, заведений / Всеволод Всеволодович Добровольский. – М.: Издательский центр «Академия», 2003. – 400 с.

5. Перельман А. И. Геохимия биосферы. – М.: Наука, 1973.





Достарыңызбен бөлісу:


©kzref.org 2017
әкімшілігінің қараңыз

    Басты бет