Баллистическая


Систематизация и периодический закон элементарных частиц



жүктеу 8.2 Mb.
бет52/99
Дата04.03.2018
өлшемі8.2 Mb.
1   ...   48   49   50   51   52   53   54   55   ...   99

Систематизация и периодический закон элементарных частиц

Главный интерес химии - в изучении основных качеств элементов. А так как их природа нам ещё вовсе неизвестна и так как для них мы поныне твёрдо знаем только два измеряемые свойства: способность давать известные формы соединения и их свойство, называемое весом атома, то остаётся только один путь к основательному с ними ознакомлению - это путь сравнительного изучения элементов на основании этих двух свойств.



Д.И. Менделеев, "Основы химии" [98]
Поняв строение элементарных частиц, можно уже пытаться их систематизировать и строить таблицу элементарных частиц, аналогичную таблице Менделеева. Такая таблица необходима не только для систематизации частиц, но и для установления связи их свойств, для уточнения известных и предсказания ещё неизвестных характеристик (масс, времён и типов распада), а также для предсказания новых частиц, которые будут находиться в пустующих клетках. Чтобы систематизировать частицы, нужно выбрать параметр, по которому будем производить систематизацию. Этим параметром, несомненно, должна быть, как и в таблице Менделеева, масса частиц. И свойства частиц должны с увеличением массы периодически повторяться. Но в таблице Менделеева порядок расположения частиц задаётся всё же не весом, а числом протонов элемента, равным заряду ядра (вес же с увеличением атомного номера может в редких случаях и уменьшаться). Как было выяснено, подобно тому как ядра всех элементов можно представить в виде сочетаний всего двух типов частиц - протонов и нейтронов, так же и все типы частиц можно представить в виде сочетания двух основных: гаммонов Г (с M=66) и октонов О (с M=8-9) (Таблица 5). При этом гаммоны аналогичны протонам, а октоны - нейтронам. И раз гаммоны - это некий аналог протонов, то именно число гаммонов в частице должно задавать её положение в таблице. Как видно из этой уточнённой таблицы, построенной базе предыдущих, масса частиц действительно нарастает с увеличением числа образующих их гаммонов.


частица

I

II

M

±

0

±



Г

в me

O







1

0

8

Г







0

1

66

±

1

0

0

1

3

207

0

0

1

0

0

4

264

±

0

0

1

1

4

273

C

0

2

0

0

8

528

+

6

0

–1

5

14

966

0

6

–1

0

6

14

974

0

0

2

2

2

16

1074

+

2

1

3

5

22

1497



1

4

1

2

23

1534

K*

11

–2

0

11

25

1746

p

1

1

5

6

27

1836

X0

0

4

3

3

28

1875

0

7

0

2

9

29

1994

0

0

0

8

8

32

2184

+

2

0

7

9

34

2328

0

6

0

4

10

34

2334



10

0

1

11

34

2343



0

4

5

5

36

2419

0

–2

2

9

7

38

2573



–2

1

10

8

38

2586



0

3

7

7

40

2707



8

3

2

10

44

2992



12

3

0

12

48

3273



5

0

9

14

51

3491

D0

2

5

7

9

54

3646

D+

–2

3

12

10

54

3656

S*

0

3

11

11

56

3796

D*0

6

5

5

11

58

3926

D*+

14

6

–1

12

58

3931

+

20

–2

3

23

64

4423

Таблица 5. "элементарных" частиц как сочетаний  и -мезонов (колонка I) или O и Г-мезонов (колонка II).

Видим, что в некоторых случаях одному числу гаммонов соответствует несколько частиц. Эти частицы объединяются физиками в семейства, поскольку имеют близкие свойства и массы. А предложенное представление частиц в виде сочетаний гаммонов и октонов позволяет понять природу этих семейств. Частицы семейства объединяет как раз одинаковое число гаммонов - в этом и причина сходства их свойств и масс. Отличаются частицы лишь числом октонов, потому и массы частиц во всех семействах отличаются в среднем на 8,5 единиц. Это хорошо видно по последнему варианту таблицы, где семейства (дублеты π, K, Ξ, D, триплет Σ) выделены полутоном. Ядерная физика объяснить этого не могла. Частицы одного семейства, схожие свойствами и массами, аналогичны изотопам одного элемента. Подобно тому как у изотопов одинаково число протонов, но различны числа нейтронов, так и частицы семейства, имея равные числа гаммонов, отличаются числом октонов.

Особенно интересным становится такое представление элементарных частиц, если изобразить его на графике с осями x и y. Тогда каждая частица представится на плоскости точкой, координаты которой отвечают числу гаммонов x и октонов y в ней (Рис. 122). Этот план микромира открывает много интересных закономерностей. Так, он позволяет выявить дублеты – частицы, расположенные одна над другой. Скажем, заряженный пион располагается точно над нейтральным, имея на один октон больше. Такие же пары, отличающиеся лишь одним октоном, составляют K+ и K0-мезоны, Σ и Σ0-гипероны, D+ и D0-частицы. Причём характерно, что заряжены в этих дублетах частицы, содержащие нечётное число октонов, а нейтральны те, в которых число октонов чётно. Это говорит о том, что октоны в частицах сцеплены с электронами и позитронами, а потому их можно рассматривать как заряженные. Кроме того, видно, что дублеты следуют через почти равные интервалы в 10 гаммонов. Числа гаммонов в дублетах равны: 4, 14, 34, 55. Вдобавок эти дублеты укладываются на некую кривую в форме баллистической траектории. Поэтому можно предсказать ещё два дублета. В одном 24 гаммона и 8-9 октонов, а в другом – 44 гаммона. И действительно, частица с таким числом гаммонов есть. Поэтому рядом с ней может быть открыта и другая частица дублета.



Рис. 122. Карта масс.

Можно уловить на карте частиц и другие закономерности. Так, частицы явно кучкуются, тяготеют к определённым узлам и линиям, образуют ячейки-параллелограммы. Впрочем, для дальнейшего анализа следует привлечь все прочие, включая малоизвестные, частицы, установить их место на карте, а также уточнить местоположение уже известных. Предстоит выявить связь места частиц на карте с их свойствами. Если это окажется ключом к разгадке микромира, то позволит в дальнейшем предсказывать и уточнять массы и свойства частиц, как это некогда позволил сделать периодический закон Менделеева. Кроме периодичности дублетов, аналогия здесь ещё и в том, что если по таблице Менделеева масса атома тем выше, чем больше в нём протонов, то и в нашей таблице масса частиц растёт к концу таблицы с увеличением числа гаммонов. Единственное исключение – Σ+-гиперон, имеющий 35 гаммонов вместо 33-х. Подобные исключения есть и в таблице Менделеева (у элементов Ar и K, Ni и Co, Te и I). Ну а частицы с равным числом гаммонов, но разными массами (дублеты) аналогичны изотопам, у которых тоже одинаково число протонов, но различны массы. И если ядро любого атома представляет собой некое сочетание протонов и нейтронов, то и любая элементарная частица – это некое сочетание октонов и гаммонов. Недаром имеется карта, на которой точно так же по осям отложено число протонов и нейтронов в ядрах. Карты сходны наличием полос и островков стабильности, вне которых сочетания частиц нестабильны.

Итак, построен в общих чертах план нижних этажей мироздания – путеводитель по микромиру. Это пока первая попытка систематизации на основе октогамонной модели частиц. Конечно, этот план ещё неточен, гипотетичен, нуждается в опытной проверке, доработке, а может и отбраковке (читатель волен составить собственный план). Но его преимущество в том, что на базе немногих естественных гипотез план позволяет единым образом объяснить все явления микро-, макро- и мегамира, в пику квантмеху и теории относительности, легко, наглядно, на базе классических моделей. В этом плане, как того и желал Ритц, электрические явления сведены к механическим и подобны ядерным.





    1. Достарыңызбен бөлісу:
1   ...   48   49   50   51   52   53   54   55   ...   99


©kzref.org 2019
әкімшілігінің қараңыз

    Басты бет