К вопросу о применении нанотехнологий в производстве строительных материалов Х. С. Явруян, И. А. Филонов, Д. А. Фесенко



жүктеу 86.84 Kb.
Дата09.07.2018
өлшемі86.84 Kb.

К вопросу о применении нанотехнологий в производстве строительных материалов
Х.С. Явруян, И.А. Филонов, Д.А. Фесенко

Ростовский государственный строительный университет, г. Ростов-на-Дону


Техника производства бетона непрерывно развивается, и сам бетон становится все более и более усовершенствованным, причем особое внимание в настоящее время уделяется нанотехнологиям. Ведущими странами мира применяющими нанотехнологии в производстве строительных материалов являются США, Япония, Германия, Корея и т.д.

На состоявшемся в Германии очередном 49-м национальном Конгрессе по бетону и железобетону были рассмотрены многие актуальные аспекты современного строительства из бетона, в том числе и вопросы применения достижений нанотехнологий (содержание докладов опубликовано в журнале BFT, № 2, 2005). На специальной сессии конгресса "Бетон будущего - от нанотехнологий к бетонам ультравысоких технологий (ultra high performance concrete UHPC)" были рассмотрены те достижения немецкой технологии, которые в той или иной мере используют результаты исследований в этой области [1].

В докладе профессора М. Шмидта "Бетон на пути к материалам хай-тек" выражается уверенность в том, что применение бетона станет вскоре более эффективным, чем применение стали. В немецких нормах DIN 1045 (1998 г.) прочность бетона на сжатие нормировалась до В55, т.е. до величины 55 N/mm2, а в DIN EN 206 (2003 г.) нормируемая прочность возросла до величины 100 N/mm2 т.е. почти удвоилась [1].

В современных конструкциях UHPC прочность бетона на сжатие в 200 N/mm2 и выше достигается достаточно легко и надежно, однако прочность на растяжение не превышает величину порядка 15 N/mm2, а прочность на растяжение при изгибе - 50 N/mm2 при насыщении бетона до 2-3% стальными или высокопрочными синтетическими фибрами. Преднапряженная арматура в конструкциях из UHPC создает столь высокое обжатие, что позволяет полностью исключить появление трещин при эксплуатационных нагрузках. Конструкции из UHPC имеют значительно меньшую площадь поперечного сечения, больший пролет и существенно большую долговечность. Это достоинство обеспечивается высокой плотностью бетона, что препятствует распространению коррозии, как самого бетона, так и стальной арматуры при действии различных агрессивных факторов, в том числе замораживания – оттаивания [1].

В лабораторных условиях получены UHPC прочностью на сжатие до 500 N/mm2, т.е. прочнее обычной стали. Но с использованием достижений нанотехнологии, уже применяемых в других отраслях науки и промышленности, в структуру бетона могут быть введены наночастицы для увеличения плотности, а вяжущее усовершенствовано на квазиатомном уровне, что придаст бетону новые, совершенно уникальные свойства.

Применению нанотехнологий для усовершенствования вяжущих и получения так называемых бездефектных бетонов посвящена работа доктора Б. Миддендорфа. Использование атомно-силовой микроскопии в комбинации с жидкостными ячейками позволяет исследовать на наноуровне процессы взаимодействия и механизмы реакции гидратации цемента, химических добавок, заполнителей и пуццолановой реакции микронаполнителей. Выявленный в работе рост микроструктуры образца гранулы клинкера при его обработке деминерализированной водой намечает возможные пути к оптимизации UHPC, особенно в отношении их прочности и долговечности [1].

Профессор Р. Треттин представил результаты опытов по применению фибр в виде углеродных нанотрубок с целью упрочнения цементной матрицы. Нанотрубки были изобретены в Японии в 1991 г., их прочность на разрыв, по некоторым данным, почти в 100 раз превосходит прочность стали. Эти трубки чрезвычайно устойчивы к проявлениям коррозии и поэтому представляют значительный интерес для целей усовершенствования бетона. Проведенные опыты показали, что введение даже сравнительно небольшого количества нанотрубок в качестве нанофибр улучшает механические характеристики композита. Работы будут продолжены в направлении улучшения сцепления нанофибр с матрицей [1].

В докладе доктора Ф. Дена рассмотрены вопросы технологии изготовления UHPC. Применение обычной техники приготовления бетонов, в т.ч. для дозировки компонентов смеси UHPC, не приемлемо: она должна быть существенно модернизирована. Высокая точность измерений, порядок смешивания компонентов и продолжительность процессов смешивания должны непрерывно контролироваться и в необходимых случаях корректироваться. Транспортирование бетонной смеси должно производиться с учетом ее фактических реологических свойств. Перерывы в подаче смеси должны быть исключены, т.к. это может негативно сказаться на характеристиках строительных конструкций. Особого внимания требуют и вопросы твердения бетона и набора им прочности. Следует принять все необходимые меры по исключению потерь влаги и соответствующего трещинообразования при усадке материала на этом технологическом переделе. Совершенно естественно, что контроль качества на всех этапах должен быть непрерывным, документируемым и является составной частью сертифицированной системы обеспечения качества [1].

Профессор Е. Фелинг в своем докладе предсказал конструкциям из UHPC более широкое, чем стальным конструкциям, применение при строительстве высотных зданий и перекрытий большого пролета. Это будет следствием как их более высокой долговечности, так и их более высокой "относительной прочности", которую он определил как отношение прочности на сжатие к плотности самого материала. Опыт практического применения конструкций из UHPC представил профессор Дж. Валравен. В Нидерландах были изготовлены и успешно применены преднапряженные шпунтовые сваи для ограждения берегов канала. Стоимость 1 м3 UHPC значительно (до 4 раз) превышала стоимость 1 м3 обычного бетона В65, однако на изготовление свай ушло только 35% объема обычного бетона в связи с существенным уменьшением их поперечного сечения. В сочетании с другими преимуществами UHPC стоимость всей конструкции шпунтового ограждения не вышла за рамки стоимости свайного ограждения из обычного бетона. Другой успешный пример включал в себя применение плиты из UHPC для пролетной части реконструируемого моста. По мнению автора, сравнительную оценку эффективности UHPC и обычного бетона следует проводить из учета стоимости 1 м3 конструкции, а не 1 м3 бетона. Это же самое доказывает и опыт Японии по сооружению преднапряженного пешеходного моста из UHPC пролетом 60 м, вес которого составил 20% от веса моста из обычного бетона, а общая стоимость моста оказалась даже на 5% ниже [1].

Нельзя не отметить достижения, принадлежащие исключительно отечественным разработчикам наноматериалов и технологий. К примеру, В.И. Корнев, И.Н. Медведева, А.Г. Ульянов получили прочный бетон от введения в цемент наночастиц гидроксида алюминия [2].

А.Н. Пономарев разработал технологию изготовления базальтовой микрофибры, модифицированной фуллерен подобными частицами — астраленами, и показал, что при ее введении прочность бетона, как на сжатие, так и на растяжение может быть заметно повышена [3].

Наномодификатором, причем опять-таки отходом, является гальваношлам — продукт, образующийся при обработке известью сточных вод гальванического производства. Авторами и многими другими исследователями показана его эффективность в составе цементных смесей [4].

Начинается промышленное использование для производства строительных материалов фуллеренов или их еще более перспективных разновидностей — нанотрубок, несмотря на то, что оба эти вещества пока еще очень дороги [5].

Так, Г. И. Яковлев с коллегами рекомендует использовать нанотрубки, синтезируемые по разработанной этим коллективом исследователей технологии, для приготовления цементных пенобетонов, поскольку это приводит к повышению физико-механических свойств, а затраты на добавку с лихвой компенсируются возможностью экономить цемент [6].

В настоящее время наиболее востребованы в России нанотехнологии, направленные на повышение качества минеральных вяжущих веществ и, в первую очередь, портландцемента (ПЦ). В нашей стране возникла крайне напряженная ситуация с этим строительным материалом. Из-за изношенности оборудования цементная промышленность не может увеличивать производство ПЦ в тех объемах, какие нужны для интенсивно развивающихся потребностей в нем.

С помощью нанотехнологий ситуацию можно разрядить. Для этого необходимо организовывать домол портландцемента перед его использованием до наноразмерных частиц. У такого цемента будет значительно большей доля вещества, вступающего в реакцию с водой (у обычного ПЦ, удельная поверхность которого около 3000 см2/г, в реакцию вступает лишь третья часть объема его частиц, преимущественно с поверхности, остальной объем выполняет в цементном камне функцию инертного заполнителя).

У домолотого цемента частицы реагируют с водой на 80 — 90 % их объема. Следовательно, на получение бетона с заданными характеристиками цемента потребуется меньше. Домолотый цемент обеспечивает получение более прочных бетонных изделий. Это обстоятельство позволяет снизить расход цементаУчитывая эти обстоятельства, в США домол цемента производится в больших масштабах, несмотря на отсутствие дефицита в нем.

В России еще 2-3 года назад идея домола цемента была бы обречена на провал. И не столько из-за отсутствия, в то время дефицита в нем, сколько от того, что не было помольного оборудования, способного измельчать твердые частицы до наноразмеров. Теперь такое оборудование есть.

Второе направление, позволяющее экономить цемент — добавление в него нанодисперсных модификаторов, позволяющих в значительной степени повысить прочность готовых изделий.

Исходя из вышеизложенного, созданный в Ростовском государственном строительном университете научно-образовательный центр «Нанотехнологии в строительстве» проводит исследования по двум основным направлениям: влияние диспергирования цемента и введения в состав компонентов смеси наночастиц различной природы и структуры на свойства цементных композиций [7, 8].

В РГСУ разработана установка для обработки материалов и активизации процессов перемешивания (УОМ) с одновременным измельчением материала и его электромагнитной обработкой.

Установка обработки материалов относится к аппаратам вихревого слоя, использующим принципиально новые методы воздействия энергии на вещество, то есть использование энергии вращающегося электромагнитного поля высокой удельной концентрации в единице объема рабочего пространства установки.

Внешне, УОМ представляет собой индуктор, помещенный в корпус. Через расточку индуктора проходит труба из немагнитного материала (рабочее пространство, в которое помещаются ферромагнитные элементы). При подаче электроэнергии в рабочем пространстве создается мощное электромагнитное поле, которое вращает ферромагнитные элементы, последние становятся магнитами и взаимодействуют с основным полем. В результате взаимодействия генерируется ряд эффектов, воздействующих на вещество, помещенное в рабочее пространство. Это магнитострикция, механострикция, кавитация, электролиз, торсионные поля, акустические волны. Удельная мощность этих эффектов весьма велика, и следствием этого является многократное возрастание скоростей физико-химических процессов, которые переходят из диффузионного на кинетический уровень, и, в результате раскрытия химических радикалов, скорости реакции возрастают в сотни раз.

Следует выделить перспективы совместного использования нескольких нанотехнологий, например, высокодисперсных исходных материалов и нанодисперсной арматуры.

Так, совмещение двух нанотехнологий: мокрого домола цемента в УОМ, обеспечивающего получение цемента с удельной поверхностью до 8000 см2/г, и введение нанодисперсной арматуры при производстве цементных растворов может значительно повысить их прочность (рис.1).

На рис. 1 представлены составы цементно-песчаных растворов: 1 – контрольный состав; 2 – состав с добавлением нанотрубок (перемешан вручную); 3 – цемент в мокром виде обработан в УОМ (без нанотрубок); 4 – цемент в мокром виде обработан в УОМ (с добавкой нанотрубок).



Таким образом, использование углеродных нанотрубок при изготовлении цементных бетонов позволяет повысить их физико-механические свойства или снизить расход цемента при сохранении проектной прочности бетона.

Рис. 1 – Исследование влияния комбинированной технологии (нанодобавки и активирование компонентов смеси) на прочность цементно-песчаных образцов.
Однако для внедрения рассматриваемых нанотехнологий требуется проведение дополнительных исследований направленных на оптимизацию режимов домола вяжущего и разработку технологий производства портландцемента с использованием наночастиц различной природы и структуры.
Литература:

  1. рамбовецкий В.П. Бетон ультравысоких технологий // Газета "Строительный эксперт", 2005, №9

  2. Корнеев В.И., Медведева И.Н., Ильясов А.Г. Ускорители схватывания и твердения портландцемента на основе оксидов и гидроксидов алюминия // Цемент и его применение, 2003, №2, с. 40-42

  3. Пономарев А.Н. Синергизм наноструктурирования цементных вяжущих и анизотропных добавок // Индустрия, 2005, № 2, с. 7-8

  4. Войтович В.А., Фирсов Л.И. Утилизация гальваношламмов // Обезвоживание. Реагенты. Техника, 2005, № 13-14, с. 43-45

  5. Запороцкова И.В. Строение, свойства и перспективы использования нанотубулярных материалов // Нанотехника, 2005, № 4, с. 42-54

  6. Яковлев Г.И., Кодолов В. И., Крутиков В.Д., Плеханова Т.А., Бурьянов А.Ф., Керене Я. Нанодисперсная арматура в цементном пенобетоне // Технологии бетонов, 2006, № 3, с. 68-71

  7. Шуйский А.И., Явруян Х.С., Мадатян С.М., Торлин Р.А., Торлина Е.А., Жукова О.А., Фесенко Д.А. Нанотехнологии в производстве строительных материалов // Строительство – 2009». Материалы межд. конф. – Ростов-на-Дону: РГСУ, 2009, с. 60-61

  8. Шуйский А.И., Явруян Х.С., Жукова О.А. НОЦ «Нанотехнологии в строительстве» в РГСУ // Строительство – 2009». Материалы межд. конф. – Ростов-на-Дону: РГСУ, 2009, с. 59.


Достарыңызбен бөлісу:


©kzref.org 2017
әкімшілігінің қараңыз

    Басты бет