Программа «мгу —школе»



жүктеу 0.83 Mb.
бет1/6
Дата17.07.2018
өлшемі0.83 Mb.
түріРабочая учебная программа
  1   2   3   4   5   6


Муниципальное общеобразовательное учреждение «Заинская

средняя общеобразовательная школа с углубленным изучением отдельных предметов №7»


«СОГЛАСОВАНо»

Руководитель МО

______О.В. Соловьёва




«Согласовано»

Зам. директора по УВР

МОУ «Заинскаясош№7с углубленным изучением отдельных предметов»

_________ Печина Л.Р.



«УтверждАЮ»

Директор

МОУ «Заинскаясош№7с углубленным изучением отдельных предметов»

__________ З.Г.Бареева



Протокол № ___

от «___» ________201_ г.



«____» _________201_ г.

«____» _________201_ г.

Рабочая учебная программа


по предмету «Математика»

в 8 классе, углубленный уровень

по программе основного общего образования

2011-2012 учебный год

Кустовской Альфии Миннахматовны,

учителя высшей квалификационной категории

Рассмотрено на заседании

педагогического совета

протокол №____от

«__»____2011г.

2011-2012 учебный год

РАБОЧАЯ ПРОГРАММА

ДЛЯ ОСНОВНОГО СРЕДНЕГО (ПОЛНОГО)

ОБЩЕГО ОБРАЗОВАНИЯ

Пояснительная записка

Рабочая программа по математике 8 класса составлена с учётом примерной программы основного общего образования по математике и скорректирована на её основе программа: С.М.Никольский «Алгебра 8», М.: «Просвящение», 2010г. и Л.С.Атанасян «Геометри 7-9», М.: «Просвящение», 2010г.

Рабочей программа составлена на основе:


  • федерального компонента государственного стандарта основного общего образования,

  • примерной программы по математике основного общего образования,

  • федерального перечня учебников, рекомендованных Министерством образования РФ,

  • с учетом требований к оснащению образовательного процесса, в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,

  • авторского тематического планирования учебного материала,

  • базисного учебного плана 2011 года.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.


В ходе освоения содержания курса учащиеся получают возможность:

  • развить представления о числе и роли вычислений в человеческой практике;

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Поставленные цели решаются на основе применения различных форм работы (индивидуальной, групповой, фронтальной); применение электронного тестирования, тренажёра способствует закреплению учебных навыков, помогает осуществлять контроль и самоконтроль учебных достижений.

Математика нацелена на формирование аппарата для решения не только математических задач, но и задач смежных предметов, окружающей реальности. Язык математики, умение «читать» геометрический чертеж, составить алгоритм решения задачи подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира.

Одной из основных задач изучения математики является развитие логического мышления, необходимого, в частности, для освоения курса информатики, физики, овладения навыками дедуктивных рассуждений. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

Образовательные и воспитательные задачи обучения математике должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики математики как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. Учителю предоставляется право самостоятельного выбора методических путей и приемов решения этих задач. В организации учебно-воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения и математического развития учащихся. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Дифференциация требований к учащимся на основе достижения всеми обязательного уровня подготовки способствует разгрузке школьников, обеспечивает их посильной работой и формирует у них положительное отношение к учебе. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.

Рабочая программа ориентирована на преподавание алгебраического материала по учебнику «Алгебра 8» под редакцией С.М. Никольского серии «МГУ-школе», Москва «Просвещение», 2010.

Содержание учебника соответствует традиционному содержанию программы для 7-9 классов, но порядок расположения материала в учебнике и способы его изложения отличаются от традиционных.

Учебник обеспечивают системную подготовку по предмету, позволяет ориентировать процесс обучения на формирование осознанных умений, требует меньше, чем обычно, времени, так как они не «натаскивают» ученика, учат действовать осознанно. Изложение материала связное: подряд излагаются большие темы, нет чересполосицы мелких вопросов, нарушающих логику изложения крупных тем.

Согласно федеральному базисному учебному плану на изучение математики в 8 классе отводится не менее 170 часов из расчета 5 ч в неделю.По плану в неделю отводится 210 часов, в том числе на алгебру 140 часов, на геометрию-70 часов.

Тематическое и примерное поурочное планирование составлено в соответствии с учебником: «Алгебра8», С.М.Никольского, М.К.Потапова и др., М.: Просвещение, 2010.


Требования к математической подготовке учащихся 8 класса
В результате изучения алгебры ученик должен

  • знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • уметь

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

  • решать линейные неравенства с одной переменной и их системы;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.


Критерии и нормы оценки знаний, умений и навыков обучающихся
Контроль предполагает выявление уровня освоения учебного материала при изучении, как отдельных разделов, так и всего курса математики в целом.

Текущий контроль усвоения материала осуществляется путем устного/письменного опроса. Периодически знания и умения по пройденным темам проверяются письменными контрольными или тестовых заданиями.


При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей:


Процент выполнения задания

Отметка

65% и более

отлично

47-64 %%

хорошо

25-46 %%

удовлетворительно

0-24 %

неудовлетворительно


При выполнении практической работы и контрольной работы:

Содержание и объем материала, подлежащего проверке в контрольной работе, определяется программой. При проверке усвоения материала выявляется полнота, прочность усвоения учащимися теории и умение применять ее на практике в знакомых и незнакомых ситуациях.

Отметка зависит также от наличия и характера погрешностей, допущенных учащимися.


  • грубая ошибка – полностью искажено смысловое значение понятия, определения;

  • погрешность отражает неточные формулировки, свидетельствующие о нечетком представлении рассматриваемого объекта;

  • недочет – неправильное представление об объекте, не влияющего кардинально на знания определенные программой обучения;

  • мелкие погрешности – неточности в устной и письменной речи, не искажающие смысла ответа или решения, случайные описки и т.п.

Эталоном, относительно которого оцениваются знания учащихся, является обязательный минимум содержания математики. Требовать от учащихся определения, которые не входят в школьный курс математики – это, значит, навлекать на себя проблемы связанные нарушением прав учащегося («Закон об образовании»).

Исходя из норм (пятибалльной системы), заложенных во всех предметных областях выставляете отметка:



  • «5» ставится при выполнении всех заданий полностью или при наличии 1-2 мелких погрешностей;

  • «4» ставится при наличии 1-2 недочетов или одной ошибки:

  • «3» ставится при выполнении 2/3 от объема предложенных заданий;

  • «2» ставится, если допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями поданной теме в полной мере (незнание основного программного материала):

  • «1» – отказ от выполнения учебных обязанностей.


Оценка устных ответов учащихся

Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой;

- изложил материал грамотным языком в определенной логической последовательности, точно используя терминологию математики как учебной дисциплины;

- правильно выполнил рисунки, схемы, сопутствующие ответу;

- показал умение иллюстрировать теоретические положения конкретными примерами;

- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;

- отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.


Ответ оценивается отметкой «4,. если ответ удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:

- допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию учителя:

- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.
Отметка «3» ставится в следующих случаях:

- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала определенные настоящей программой;


Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;

- обнаружено незнание или неполное понимание учеником большей или наиболее важной части учебного материала;

- допущены ошибки в определении понятий, при использовании специальной терминологии, в рисунках, схемах, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Отметка «1» ставится в следующих случаях:

- ученик обнаружил полное незнание и непонимание изучаемого учебного материала;

- не смог ответить ни на один из поставленных вопросов по изучаемому материалу;

- отказался отвечать на вопросы учителя.



ПРИМЕРНОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА

Школьный компонент добавлен на решение более широкого круга задач и дополнительные часы включены во все темы



Содержание

Часы

Допол.часы



Функции и графики

Функции



16


1



Квадратные корни

13

3



Множества

2

2



Квадратные уравнения

18

5



Рациональные уравнения

15

2



Разложение многочлена на множители и решение уравнений. Комплексные числа.

5

5



Линейная функция

11

2



Квадратичная функция

13

4



Функция

Построение графиков функций, содержащих модули.

Уравнение прямой, уравнение окружности.

4

1



Системы рациональных уравнений

14

4



Графический способ решения систем уравнений

11

3



Случайные события и вероятность событий.

11

3



Повторение

7






Всего

140

35


Достарыңызбен бөлісу:
  1   2   3   4   5   6


©kzref.org 2017
әкімшілігінің қараңыз

    Басты бет