Скалярное поле, производная по направлению, градиент



жүктеу 170.37 Kb.
Дата16.04.2019
өлшемі170.37 Kb.

17. Теория поля.

17.1. Скалярное поле.



1
7.1.1. Скалярное поле, производная по направлению, градиент.
Все физические процессы, проходящие в любой области пространства, характеризуются определёнными значениями некоторых величин. Так, нагревание тела описывается изменением температуры в точках этого тела; загнивание экономического региона характеризуется количеством остановленных в нём предприятий и т.д. Если каждой точке М некоторой области V пространства соответствует значение некоторой скалярной величины u(M), то говорят, что в области V задано скалярное поле u(M). Поле называется стационарным, если оно не меняется во времени; мы будем изучать только стационарные поля.

Формально определение скалярного поля совпадает с определением функции u(M), заданной в области V; это верно и по существу, однако при изучении теории поля полезно иметь в виду, что функция u(M) описывает конкретную физическую реальность. Для изучения функциональной зависимости u(M) нам придётся ввести некоторую систему координат. Вид функции u(M) (её аналитическое выражение) меняется в зависимости от того, как введена координатная система (где расположено начало системы координат, куда направлены оси, каков масштаб измерения расстояний и т.д.), однако сущность, которую описывают эти разные выражения, одна и та же. Произвол в задании системы координат приводит к необходимости различать величины, не зависящие от конкретной системы (инвариантные относительно системы координат), и величины, принимающие разные значения в разных системах (неинвариантные величины). Основной инвариантной величиной является, конечно, само значение u(M) поля в точке М. Мы будем называть поле u(M) гладким, если функция u(M) имеет непрерывные частные производные . Значения этих производных в точке М зависят от системы координат, однако составленная с их помощью линейная комбинация базисных ортов системы образует градиент поля u(M) и инвариантна относительно системы координат. Вектор направлен в сторону роста значений поля u(M) по направлению наибольшей скорости роста; длина равна скорости роста в этом направлении. Инвариантна относительно системы координат производная поля в точке М по любому направлению , выходящему из этой точки, так как она характеризует скорость изменения поля в направлении . Формально производная по направлению определяется как , где в зависимости от того, имеют ли ось и вектор одинаковые или противоположные направления. Производная по направлению выражается через градиент формулой

,

где - орт направления , - направляющие косинусы этого направления.

В дальнейшем для обозначения градиента мы часто будем применять введённый Гамильтоном оператор ("набла"). Этот вектор-оператор определяется как . Если формальное произведение понимать как , то , т.е. произведение вектора набла на скаляр u(M) даёт значение градиента поля u в точке M.

Градиент поля имеет следующие дифференциальные свойства



  1. , или ;

  2. , или ;

  3. , или ;

  4. , или ,

которые легко доказываются применением обычных правил дифференцирования.

Для визуального изображения скалярных полей применяются поверхности и линии (в плоском случае) уровня. Поверхностью уровня скалярного поля u(M), соответствующей значению поля С, называется геометрическое место точек таких, что . Поверхности уровня, соответствующие разным значениям постоянной С, не могут иметь общих точек, поэтому область V, в которой задано поле, расслаивается на поверхности уровня; совокупность этих поверхностей, построенных для некоторого регулярного набора значений С, например, С=1, С=2, С=3 и т.д., даёт наглядное представление об изменении поля при переходе от одной точке к другой. Поле меняется быстрее там, где эти поверхности расположены гуще. Градиент поля в каждой точке Р0 ортогонален поверхности уровня, проходящей через эту точку, т.е. поверхности .



17.1.2. Частные случаи скалярных полей.

С
калярное поле называется плоским, если существует такая плоскость П, что поле принимает одинаковые значения во всех точках прямой, перпендикулярной плоскости П. Другими словами, это поле устроено одинаково во всех плоскостях, параллельных плоскости П. Удачным выбором координатной системы в этом случае будет ввести её так, чтобы плоскость П была плоскостью Оху. Тогда ось Оz будет перпендикулярна П, и, по определению плоского поля, функция u(M) не должна зависеть от z, т.е. u(M) = u(х,у). Поверхности уровня этого поля - цилиндрические поверхности с образующими, перпендикулярными плоскости П; след этих поверхностей в плоскости П даст линии уровня функции u(х,у).

Скалярное поле называется цилиндрическим, если существует такая прямая L, что значения поля u(M) зависят только от расстояния r от точки М до прямой L. Если система координат введена так, что эта прямая - ось Оz, то и u(M)= u(r), т.е. цилиндрическое поле - частный случай плоского поля. Так как , то , . Понятно, что цилиндрическое поле проще всего описывается в цилиндрических координатах, так как функция u(M) не будет зависить от координат .

Скалярное поле называется сферическим, если существует такая точка О, что значения поля u(M) зависят только от расстояния r от точки М до точки О. Если точка О взята за начало системы координат, то и u(M)= u(r). Поверхности уровня сферического поля - сферы с центром в точке О. В этом случае также , . Сферическое поле проще всего описывается в сферических координатах, так как функция u(M) не будет зависить от координат .

17.2. Векторное поле.

17.2.1. Векторное поле. Если каждой точке М некоторой области V пространства соответствует значение некоторой векторной величины (M), то говорят, что в области V задано векторное поле (M). Примеры векторных полей - поле тяготения, поля электрической и магнитной напряжённостей, поле скоростей частиц движущейся жидкости.

Если в некоторой декартовой системе координат вектор (M) имеет координаты Р(M), Q(M), R(M), то . Таким образом, задание векторного поля (M) эквивалентно заданию трёх скалярных полей Р(M), Q(M), R(M). Будем называть векторное поле гладким, если его координатные функции - гладкие скалярные поля. Кроме того, будем предполать, что векторное поля не имеет особых точек, т.е. при , т.е. функции Р, Q, R не равны нулю одновременно.

В зависимости от рассматриваемых вопросов для нас будет более предпочтительной какая-либо одна из двух интерпретаций векторного поля - силовая или гидродинамическая. В силовой интерпретации вектор (M) трактуется как сила (тяжести, напряжённости, например), действующая в точке М; в гидродинамической интепретации (M) рассматривается как поле скоростей текущей в области V несжимаемой жидкости. Как и в случае скалярного поля, мы рассматриваем стационарные векторные поля, т.е. поля, постоянные во времени.

17.2.2. Дифференциальные характеристики векторного поля.

17.2.2.1. Дивергенция векторного поля.

Пусть в некоторой системе координат . Скалярная величина (скалярное поле) называется дивергенцией поля в точке М и обозначается : . С помощью оператора набла дивергенция определяется как скалярное произведение . В дальнейшем мы увидем, что дивергенция инвариантна относительно системы координат и обозначает плотность источников поля, а сейчас сформулируем свойства дивергенции:



  1. Если (M) - постоянное векторное поле, то ;

  2. (или );

  3. Если u - скалярное поле, то (или ). В частности, если (M) - постоянное векторное поле, то .

Докажем, например, третье свойство. .

Пример вычисления дивергенции: если , то .



17.2.2.2. Ротор векторного поля. Ротором векторного поля (M) в точке называется векторная величина (векторное поле) . Запомнить эту формулу очень легко, если выразить через оператор Гамильтона набла: равен векторному произведению . Действительно, . Если теперь раскрыть этот определитель по первой строке, получим

.

Пример: если , то


Свойства ротора:

  1. Если (M) - постоянное векторное поле, то ;

  2. (или );

  3. Если u - скалярное поле, то (или ). В частности, если (M) - постоянное векторное поле, то .

Докажем третье свойство.

.

17.2.3. Частные случаи векторных полей.

Векторное поле называется однородным (или постоянным), если .

Векторное поле называется плоским, если все векторы (M) параллельны некоторой плоскости П и одинаковы вдоль каждого перпендикуляра к П. Если система координат введена так, что П совпадает с плоскостью Оху, то, очевидно, (M). Плоское поле достаточно рассматривать в пределах плоскости Оху, так как во всех плоскостях, параллельных Оху, оно одинаково. Для плоского поля , . Пример плоского поля - магнитное поле, создаваемое током I, текущим по бесконечно длинному проводнику. Если ось Oz направлена вдоль этого проводника, то вектор напряженности магнитного поля равен , это поле определено везде, кроме оси Oz.

Векторное поле называется центральным, если в каждой точке вектор (M) коллинеарен радиусу-вектору этой точки: (). Так как , , то для центрального поля , .

Векторное поле называется центрально-симметричным, если оно центрально, и функция u(M) зависит только от расстояния r, т.е. от длины радиуса-вектора точки М : (). Так как , , то для центрально-симметричного поля , .

Найдем вид центрально-симметричного поля, для которого дивергенция равна нулю (в дальнейшем мы будем называть такие поля соленоидальными): .

Таким образом, соленоидальны только те центрально-симметричные поля, в которых зависимость от r такая же, как в законах Кулона и всемирного тяготения. В связи с этим встают мировоззренческие вопросы о том, вычислял ли Господь Бог дивергенцию, когда создавал Вселенную, и о связи показателя степени в знаменателях законов Кулона и всемирного тяготения с пространственной размерностью мира, в котором мы живём

17.2.4. Векторные линии. Так как вектор (M) определяется длиной и направлением в пространстве, задание в области V поля (M) равносильно заданию в V полей длин и направлений. Геометрической характеристикой, определяющей в V поле направлений, служит совокупность векторных линий.

Определение. Векторной линией поля (M) называется любая линия, которая в каждой своей точке М касается вектора (M).

В силовой интерпретации поля векторными линиями являются силовые линии поля, в гидродинамической - векторные линии есть траектории, по которым движутся частицы жидкости (линии тока).

Получим дифференциальные уравнения векторных линий в декартовой системе координат. Пусть векторная линия определяется векторным уравнением . Тогда касательный вектор к этой линии в любой точке должен быть коллинеарен полю, т.е.

.

Эта записанная в симметричной форме система из трёх уравнений первого порядка и определяет векторные линии. Так как функции P, Q, R одновременно не обращаются в нуль, то в любой точке одна из них отлична от нуля. Пусть, например, в точке . Тогда систему можно записать в виде . Функции P, Q, R непрерывно дифференцируемы, поэтому для последней системы выполняются условия теоремы существования и единственности задачи Коши с начальными условиями . Следовательно, через точку М0 проходит, и при том единственная, интегральная кривая системы, которая и будет векторной линией поля.

Пусть, например, поле . Тогда векторные линии определяются системой . Решая уравнение , получим , из уравнения получаем , таким образом, уравнения векторных линий

П
усть L - некоторая кривая в области V, не являющаяся векторной линией. Проведём через каждую точку L векторную линию; получившаяся в результате поверхность называется векторной поверхностью. Если L - замкнутая линия, то поверхность называется векторной трубкой. Основное свойство векторной трубки: векторная линия, вошедшая в трубку через поперечное сечение , может выйти из неё только через другое сечение . Действительно, если бы векторная линия пересекла боковую поверхность векторной трубки, то через точку пересечения проходило бы две векторные линии, что, как мы установили, невозможно.


17.3.Поток векторного поля через поверхность.

В разделе 16.4. Поверхностные интегралы мы рассмотрели задачу о вычислении количества жидкости, протекающей через определённую сторону двусторонней поверхности за единицу времени, и получили, что это количество выражается поверхностным интегралом . Имеется целый ряд физических процессов, которые описываются аналогичными поверхностными интегралами, например, магнитная индукция.

Среди других достоинств математики её мощь заключается, в частности, в способности исследовать процессы в самых разных областях естествознания, абстрагируясь от их физической сущности; приведённые выше примеры показывают естественность введения понятия потока векторного поля через поверхность.

17.3.1. Определение. Пусть - двусторонняя гладкая поверхность, расположенная в области V, в которой задано поле (M). Фиксируем выбором нормали одну из двух сторон поверхности . Потоком векторного поля (M) через поверхность называется поверхностный интеграл первого рода по от скалярного произведения (M) на единичный вектор нормали к выбранной стороне поверхности: П.

Существуют различные формы записи этого интеграла. Так как , поток может обозначаться П. Иногда произведение обозначают и называют этот вектор вектором элементарной площадки, тогда П. Если связать с проекциями на координатные плоскости:



и использовать координатную запись поля , то скалярное произведение в координатной форме даст П, т.е. поток может быть выражен и через поверхностный интеграл второго рода. Напомню, что в таком интеграле необходимо выбирать знак каждого слагаемого в зависимости от знака соответствующей координаты нормали.



17.3.2. Свойства потока векторного поля. Согласно определению, поток - поверхностный интеграл, поэтому он имеет все свойства поверхностного интеграла. Понятно, что некоторые из этих свойств теряют смысл (интеграл от единичной функции, например), поэтому перечислим основные свойства потока.

  1. Линейность. ;

2. Аддитивность. . Здесь и - кусочно-гладкие поверхности, которые могут пересекаться только по границам; нормали на этих поверхностях должны быть согласованы так, чтобы определять одну сторону всей составной поверхности .

3. Поток меняет знак при изменении стороны поверхности (так как в каждой точке вектор меняется на -).



17.3.3. Вычисление потока векторного поля. В соответствии с определением П,

поток может вычисляться и с помощью поверхностного интеграла первого рода, и с помощью поверхностного интеграла второго рода. В примере 2 раздела 16.4.4.3. Вычисление поверхностного интеграла второго рода было приведено вычисление потока поля через часть плоскости , ограниченную координатными плоскостями, в том и другом представлении. Рассмотрим более сложный пример.




Пример. Найти поток векторного поля через полную внешнюю поверхность тела, ограниченного поверхностями .

Решение. Поверхность состоит из двух частей: - часть поверхности параболоида накрытая шапочкой - частью нижней полусферы ; уровень пересечения этих поверхностей по оси Oz определяется уравнением , откуда ; проекция линии пересечения на плоскость Oxy - окружность радиуса . Выпишем нормали: ; выбираем знак "+", так как на нормаль образует тупой угол с осью Oz, и коэффициент при должен быть отрицателен (мы находимся в полупространстве ). С учётом того, что на , , . Уравнение в виде поверхности уровня: , , знак "+", так как угол между и осью Oz острый, .

1. Вычисление с помощью поверхностного интеграла первого рода: П=П12, П1, П2, обе поверхности однозначно проектируются на плоскость Oxy в круг радиуса , поэтому П1 .

П2

.

П=П12.

2
. Посмотрим, к каким вычислениям приводит применение поверхностного интеграла второго рода. . Для вычисления придется разбить полную поверхность на части , находящуюся в полупространстве , где , и , находящуюся в полупространстве , где ; (с учётом того, что подынтегральная функция меняет знак при переходе от к ) .

Интеграл равен нулю, так как подынтегральная функция чётна по у, а интегралы по частям поверхности, находящихся в полупространствах , где , и , где , берутся с разными знаками.

Интеграл (в соответствии со знаками на и ) . Поток .

Ответы, как и должно быть, совпали, однако вычисления с помощью криволинейного интеграла первого рода оказались существенно более простыми.



17.3.4. Теорема Остроградского. Пусть - кусочно-гладкая замкнутая поверхность, ограничивающая область V, - гладкое векторное поле. Тогда поток поля через внешнюю сторону равен тройному интегралу от дивергенции поля по V:

.

Приведённую выше формулу обычно называют формулой Остроградского в векторной форме. Если записать её в виде или , то получим формулу Остроградского в координатной форме. Естественно, для потока в левой части формулы могут применяться и другие обозначения.



Доказательство. Достаточно доказать формулу в случае, когда тело V - простое, т.е. проекция V на любую координатную плоскость - простая область D, и любая прямая, перпендикулярная этой плоскости и проходящая через внутреннюю точку V, пересекает границу V в двух точках. Если V не является простой областью, мы разобьём её на простые части; тогда сумма тройных интегралов по этим частям, в силу аддитивности, даст интеграл по всей области V ; а при вычислении поверхностных интегралов интегралы по введённым внутренним перегородкам будут браться дважды с противоположными направлениями нормали и взаимно уничтожатся. Кроме того, достаточно доказать формулу Остроградского для каждого из слагаемых: , , , тогда сумма этих формул даст общую формулу. Докажем, например, что . Простую область V, как мы знаем, можно описать следующим образом: . Вычисляем : . Знак последнего слагаемого выбран с учётом того, что на . Если в полной границе области V присутствует цилиндрическая составляющая , то , поэтому окончательно . Совершенно аналогично доказываются формулы для двух других слагаемых. Формула Остроградского доказана.

Применим формулу Остроградского для решения задачи, рассмотренной в предыдущем разделе: найти поток векторного поля через полную внешнюю поверхность тела, ограниченного поверхностями : ,



. Естественно, ответ получился тот же; но этот способ вычисления оказался самым простым.

1
7.3.5. Инвариантное определение дивергенции.
В разделе 17.2.2.1. Дивергенция векторного поля мы определили дивергенцию как выражение в определённой системе координат : . Теорема Остроградского позволяет понять смысл дивергенции поля в точке М как объективного атрибута векторного поля без использования координатной системы. Пусть - замкнутая поверхность, окружающая точку М, V - тело, заключенное внутри , - вектор единичной внешней нормали к . Тогда . По теореме о среднем для тройного интеграла существует точка такая, что . Следовательно, . Отношение значения некоторой физической величины к объёму принято называть средней плотностью этой величины в объёме; если объём стягивается к точке М, предел средней плотности называется локальным значением плотности в точке М. Таким образом, мы можем трактовать как среднюю плотность потока в объёме V. Будем теперь стягивать к точке М, при этом и V стягивается к точке М; , и, вследствие непрерывности , . Поэтому будет равна плотности потока в точке М, и так как плотность потока определяется независимо от выбора какой-либо системы координат, то дивергенция векторного поля инвариантна относительно выбора координатной системы.

Используем теперь гидродинамическую интерпретацию поля для выяснения физического смысла дивергенции. Пусть (M) - стационарное поле скоростей несжимаемой жидкости. В каком случае поток через замкнутую поверхность может быть отличен от нуля, т.е. в каком случае из V вытекает больше жидкости, чем втекает (при П>0) или наоборот (при П<0)? Ясно, что П>0 может быть только в том случае, если в V появляется дополнительная жидкость, т.е. в V имеются источники поля. П<0 может быть только в том случае, если в V исчезает часть жидкости, т.е. в V имеются стоки поля. Поэтому как плотность потока в точке М определяет силу источника (при >0) или стока (при <0) в точке М.



По аналогии с полем скоростей жидкости считают, что дивергенция определяет силу источников и стоков поля в любом поле (M).






Достарыңызбен бөлісу:


©kzref.org 2019
әкімшілігінің қараңыз

    Басты бет