ЧЕРНОБЫЛЬСКАЯ КАТАСТРОФА
ЧАСТЬ І
ИСТОРИОГРАФИЯ СОБЫТИЙ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ И ЭКОЛОГИЧЕСКИЕ ПОСЛЕДСТВИЯ
ГЛАВА 1
МАСШТАБЫ КАТАСТРОФЫ. СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ ПОСЛЕДСТВИЯ КАТАСТРОФЫ
1.1. Оценка масштабов катастрофы
1.1.1. Проектирование и строительство Чернобыльской АЭС
В соответствии с постановлением Совета Министров СССР от 29 сентября 1966 г. был утвержден план ввода в СССР в течение 1966 - 1977 гг. атомных станций электрической мощностью 11,9 млн кВт, в том числе атомных электростанций (АЭС) с реакторами нового типа РБМК-1000 мощностью 8 млн кВт.
Одну из новых АЭС было решено расположить в центральных районах Украины. Площадку выбрали в восточной части региона, именуемого Белорусско-Украинским Полесьем, около 110 км севернее Киева и 12 км северо-западнее Чернобыля (Киевская обл.).
Строительство ЧАЭС осуществлялось с 1970 г. трестом Южатомэнергострой Минэнерго СССР.
Введение в действие 1-го энергоблока состоялось в сентябре 1977 г., 2-го - в январе 1979 г., 3-го и 4-го - соответственно в декабре 1981 и 1983 гг. Следует отметить, что 3-й и 4-й энергоблоки, входящие во вторую очередь ЧАЭС, относятся ко второму поколению атомных станций этого типа.
Задолго до пуска 3-го и 4-го энергоблоков родилась идея сооружения в Чернобыле 5-го и 6-го энергоблоков, т.е. третьей очереди ЧАЭС. В 1981 г. были начаты строительно-монтажные работы по ее сооружению. Пуск 5-го энергоблока был намечен на осень 1986 г., но весной (после аварии на 4-м энергоблоке) строительство было остановлено. А вскоре было официально объявлено, что сооружение 5-го и 6-го энергоблоков ЧАЭС прекращено.
Послеаварийный пуск 1-го энергоблока ЧАЭС произошел 1 октября 1986 г., 2-го - 5 ноября 1986 г., 3-го - 3 декабря 1987 г.
1.1.2. Конструкционные особенности реакторов РБМК-1000
Для ЧАЭС в качестве базового был принят энергоблок с реактором РБМК-1000 электрической мощностью 1000 МВт. Это гетерогенный канальный реактор на тепловых нейтронах, в котором в качестве замедлителя используется графит, а в качестве теплоносителя - вода.
Концепция мощных реакторов канального типа с графитовым замедлителем и кипящим теплоносителем была разработана в начале 60-х годов. К этому времени в стране уже имелся опыт создания и эксплуатации уран-графитовых реакторов с водным теплоносителем (Обнинская, Белоярская, Билибинская, Сибирская АЭС).
Принципиальной особенностью конструкции канальных реакторов являлось отсутствие специального прочного корпуса, свойственного реакторам типа ВВЭР (водо-водяной энергетический реактор). Кроме того, на реакторах РБМК можно осуществлять перегрузку ядерного топлива без их остановки, что позволяет повысить коэффициент использования мощности.
Уже в ходе предварительного следствия было установлено, что реакторы типа РБМК-1000 имеют некоторые несовершенства конструкции (главный конструктор - академик H.A-Долежаль; научный руководитель всего комплекса работ, связанных с созданием реактора этой серии, - академик А.П.Александров). Учреждения-исполнители: Институт атомной энергии (ИАЭ) им. И.В.Курчатова (научный руководитель); Научно-исследовательский и конструкторский институт энерготехники (главный конструктор); Атомэнергопроект (главный проектант).
Теперь уже ясно, что для повышения безопасности и надежности реактора следовало бы уменьшить паровой коэффициент реактивности и создать быстродействующую систему аварийной защиты. Было также отмечено, что при загрузке реактора стержни аварийной защиты при своем движении вниз в течение пяти секунд вносили в реактор не отрицательную, а положительную реактивность (так называемый эффект положительной остановки), т.е. налицо дефект конструкции стержней - потенциальный фактор аварии [15]. После чернобыльской аварии большинство этих недостатков было исправлено. В частности, на всех 15 действующих в СССР реакторах РБМК-1000 начальное обогащение урана было повышено до 2,5 %, время срабатывания системы управления снижено примерно в 10 раз, что позволило улучшить нейтронно-физические характеристики реактора, сделать его более устойчивым на всех уровнях мощности. Однако по оценкам некоторых специалистов в области ядерной безопасности система управления и защиты реакторов типа РБМК все еще не обеспечивает безопасной эксплуатации станций [II].
1.1.3. Оценка активности продуктов деления и трансурановых элементов, накопившихся в реакторе к моменту аварии
К моменту остановки 4-го энергоблока ЧАЭС, которая была запланирована на 25 апреля 1986 г., активная зона его реактора содержала 1650 тепловыделяющих сборок (ТВС) со средним выгоранием 10,3 МВт-сут/кг. Основную часть (75 %) составляли ТВС первой загрузки с выгоранием 10-15 РњР'С‚-сут/кг. К этому времени в активной зоне реактора 4-го энергоблока накопилось 1500 МКи радиоактивных продуктов деления и активации. До аварии реактор 4-го энергоблока эксплуатировался в течение трех лет (865 календарных дней, или 715 эффективных суток). Катастрофа произошла к концу рабочей кампании активной зоны реактора, когда накопление радиоактивных продуктов деления было максимальным.
В табл. 1.1.1 приведены данные по активности радионуклидов в реакторе на момент аварии [9].
Во время остановки 4-го энергоблока по утвержденной главным инженером ЧАЭС Н.М.Фоминым программе предполагалось провести испытания реактора с отключенными защитами в режиме полного эбесточивания оборудования ЧАЭС.
Таблица І.1.1
Активность радионуклидов в реакторе 4-го энергоблока ЧАЭС на момент аварии
Радионуклид*
|
Период полураспада T(l/2), сут
|
Энергетический выход, МэВ/расп
|
Активность абсолютная, МКи
|
239Np
|
2,35
|
0,16
|
720
|
99Mо
|
2,75
|
0,28
|
160
|
132Tе
|
3,25
|
0,24
|
73
|
132I
|
(3,25)
|
1,84
|
|
131I
|
8,04
|
0,39
|
86
|
140Ва
|
12,8
|
0,18
|
135
|
140La
|
(12,8)
|
2,30
|
|
141Cе
|
32,5
|
0,80
|
150
|
103Ru
|
39,4
|
0,49
|
130
|
89Sr
|
52
|
0
|
63
|
91Y
|
58
|
0
|
70
|
95Zr
|
64
|
0,74
|
130
|
95Nb
|
(64)
|
0,76
|
130
|
110mAg
|
250
|
2,84
|
0,5
|
144Ce
|
284
|
0,02
|
90
|
106Ru
|
367
|
0,20
|
60
|
134Cs
|
2,06 года
|
1,55
|
4,0
|
125Sb
|
2,77 года
|
0,44
|
0,7
|
90Sr
|
28,8 года
|
0
|
6
|
137Cs
|
30,2 года
|
0,57
|
8
|
238Pu
|
87,7 года
|
0
|
0,02
|
239Pu
|
24380 лет
|
0
|
0,02
|
240Pu
|
6537 лет
|
0
|
0,03
|
242Cm
|
163
|
0
|
0,49
|
*В порядке возрастания Т(1/2).
**В скобках указан период полураспада материнского радионуклида.
В январе 1986 г. программа испытаний была направлена генеральному проектировщику в Гидропроект и в Госатомэнергонадзор СССР для согласования. Ответа не последовало [9].
1.1.4. Хронология проведения испытаний на 4-м энергоблоке ЧАЭС
25 апреля 1986 г. ситуация развивалась следующим образом [17,38]:
1 ч 00 мин - согласно графику остановки реактора, работающего на номинальных параметрах, персонал приступил к снижению его тепловой мощности.
13 ч 05 мин - при тепловой мощности реактора 1600 МВт отключен от сети турбогенератор №-7 4-го энергоблока, а электропитание переведено на турбогенератор№-8.
14 ч 00 мин - отключена система аварийного охлаждения реактора (САОР). Реактор продолжал работать без нее. Сделано это было сознательно, чтобы исключить возможный тепловой удар. По требованию диспетчера Киевэнерго в 14 ч 00 мин вывод энергоблока из работы был задержан. Его эксплуатация все это время продолжалась с отключенной САОР.
23 ч 10 мин - получено разрешение на остановку реактора. Началось дальнейшее снижение его тепловой мощности до 1000 - 700 МВт, как предусматривалось программой. Но оператор не справился с управлением, в результате чего мощность упала почти до нуля. Персонал попытался поднять ее.
26 апреля 1986 г.
1 ч 00 мин - удалось стабилизировать мощность реактора на уровне 200 МВт. Дальше поднимать ее было нельзя из-за малого оперативного запаса реактивности.
1 ч 07 мин - к шести работающим главным циркуляционным насосам подключили еще два, чтобы повысить надежность охлаждения активной зоны реактора.
1 ч 20 мин - стержни автоматического регулирования вышли из активной зоны на верхние концевики. Только так удалось удержать тепловую мощность реактора на уровне 200 МВт.
1 ч 22 мин 30 с - в активной зоне находилось почти вдвое меньше необходимого количества стержней. Реактор требовалось немедленно заглушить.
1 ч 23 мин 04 с - оператор закрыл стопорно-дроссельные клапаны турбогенератора№-8. Подача пара на него прекратилась. Начался режим выбега ротора турбогенератора. Одновременно была нажата и кнопка МПА (максимальной проектной аварии). Таким образом, оба турбогенератора - седьмой и восьмой - были отключены. В результате в технологических каналах реактора вскипел теплоноситель и реактор оказался по расходу теплоносителя в таком состоянии, когда даже небольшое изменение его мощности могло привести к увеличению объемного паросодержания, что, в свою очередь, вызвало бы появление положительной реактивности. Колебания мощности реактора в конечном итоге могли послужить причиной дальнейшего ее роста.
1 ч 23 мин 40 с - начальник смены, поняв опасность ситуации, дал команду нажать кнопку самой эффективной автоматизированной защиты (АЗ-5). Все регулирующие стержни начали двигаться вниз, однако вскоре остановились. Не помогло и ручное управление - стержни-поглотители так и остались в верхней части активной зоны (прошли 2 - 2,5 Рј вместо положенных 7 м).
1 ч 23 мин 58 с - концентрация водорода в гремучей смеси стала взрывоопасной, и раздались взрывы. По сути дела, реактор и здание 4-го энергоблока были разрушены серией взрывов гремучей смеси.
К 15 ч 26 апреля 1986 г. было достоверно установлено, что реактор разрушен и из него в атмосферу поступают огромные количества радиоактивных веществ.
Иностранными специалистами в реакторах РБМК-1000, в том варианте, в котором они работали до аварии на ЧАЭС, были выделены пять главных конструктивных ошибок:
неверная конструкция стержней, что может привести к кратковременному увеличению реактивности при нажатии аварийной кнопки;
возможность удаления из активной зоны практически всех стержней;
медленное движение стержней вниз при аварийной остановке;
положительный коэффициент паровой реактивности;
возможность потери теплообменника (охладителя). Авария подобного типа была бы, по утверждению западных физиков [42], невозможна в реакторах, имеющих другую конструкцию.
В работе [15] делается вывод о том, что разгон реактора произошел из-за положительного парового коэффициента реактивности и положительного выбега реактивности на начальном этапе погружения стержней. Эти два эффекта вполне объясняют разгон реактора без привлечения дополнительных гипотез о внешних воздействиях, приведших к появлению пара в активной зоне реактора.
1.1.5. Действия операторов в аварийной ситуации
Оценивая ситуацию и действия эксплуатационного персонала после взрыва, можно сказать, что безусловный героизм и самоотверженность проявили персонал машинного зала и пожарные на кровле. Они предотвратили дальнейшее развитие катастрофы как внутри, так и снаружи машинного зала и спасли таким образом станцию [17].
Первыми приняли на себя удар ядерной стихии внутри 4-го энергоблока операторы его центрального зала. Их ошибка состояла лишь в том, что они не знали всех возможностей реактора РБМК. У них имелись документы, где описаны конструкция реактора, правила его эксплуатации, но ничего не сказано об особенностях реактора этого типа, а также о том, на что нужно обращать особое внимание и чего надо опасаться.
После взрыва персонал станции в полной темноте обесточил все распределительные щитки и перекрыл заглушки - в противном случае пожарные, тушившие машинный зал, погибли бы от поражения электрическим током. У людей в ту ночь, кроме каски на голове, бахил на ногах, защитной маски, обыкновенной спецодежды на теле не было никаких дополнительных средств защиты. Все они были специалистами и знали, что работают при очень высоких уровнях радиоактивности, о чем свидетельствовало появление симптомов острой лучевой болезни (тошнота, рвота, понос, головокружение). И несмотря на это, люди шли и выполняли свои обязанности.
Анализ причин аварии свидетельствует о надуманности и политическом характере обвинений персонала в безответственности, некомпетентности, грубейших ошибках. Его ошибками были отступления от технического регламента и программы эксперимента.
Согласно программе эксперимент надо было проводить при тепловой мощности 700 - 1000 РњР'С‚. Его же проводили при мощности 280 - 300 РњРІС‚, решив, что нет смысла специально ее поднимать, так как по окончанию эксперимента реактор должен был быть заглушен для проведения планово-предупредительного ремонта. Но, как оказалось, при такой мощности, вопреки общепризнанному утверждению, что чем ниже уровень мощности, тем безопаснее, реактор ведет себя нестабильно: проявляются все недостатки, обусловленные физикой самого реактора, его загрузкой, а также теми коэффициентами, которые не укладывались в основные положения безопасности. Однако об этом грамотно нигде не было сказано.
Взрыв мог произойти и в том случае, если бы этих ошибок не было. Допущенные же при действительно надежной системе управления и защиты реактора, они в самом худшем случае привели бы всего-навсего к недельному простою энергоблока.
1.1.6. Диагностические изменения в разрушенном энергоблоке
Как известно, при проведении эксперимента по обеспечению электроэнергией атомной станции в экстремальных условиях произошла техногенная ядерная катастрофа на 4-м энергоблоке ЧАЭС. В результате с 26 апреля по 6 мая 1986 г. из разрушенного энергоблока выбрасывались радионуклиды, накопившиеся в реакторе (табл. 1.1.2).
Выбросы радионуклидов из реактора были неравномерными. Это обусловлено как естественными спадами процессов в реакторе, так и постоянными попытками заглушить его. За отмеченные девять-десять дней в развал 4-го энергоблока было сброшено около 5000 т различных материалов (бора, доломита, песка, глины), включая 2400 т свинца.
Общее количество выброшенных из реактора радионуклидов составило около 90 МКи, из которых 45 МКи приходится на долю ксенона, ~ 1 МКи - криптона, 7-10 МКи -131J, 1 - 2 МКи -137Cs и 0,2 МКи -90Sr. Выброшенные в атмосферу и на почву радионуклиды могут быть сгруппированы следующим образом:
благородные газы (ксенон, криптон);
элементы с атомной массой (А) ~ 130 (йод, теллур, цезий);
элементы с А ~90 (стронций, ниобий, молибден);
уран и трансурановые элементы.
Состояние ядерного топлива[З]. Измерение ядерных и тепловых характеристик остатков топлива внутри саркофага позволяет утверждать, что оно находится в глубокоподкритичном состоянии. Следовательно, в настоящее время нигде внутри саркофага не происходит самопроизвольная цепная ядерная реакция и вероятность ее возникновения очень мала. Основная часть ядерного топлива во время активной стадии аварии соединилась с бетоном строений, переплавилась, образовав стекловидные и пемзообразные лавы из двуокиси кремния и остатков конструкционных материалов. Кроме лавообразных масс в саркофаге находятся фрагменты активной зоны и мелкодиспергированное топливо. "Горячие" топливные частицы условно подразделяются на мелкие (около микрона) и крупные (около 10 микрон). Мелкие частицы возникли в процессе горения графита и преобразования топлива, крупные - в первые моменты аварии, когда шло разрушение топливных таблеток по границам зерен двуокиси урана. Установлено, что с течением времени идет процесс измельчения крупных "горячих" частиц и превращения их в более опасные для человека формы. По химическому составу крупные "горячие" частицы совпадают с топливом на момент аварии, а мелкие - с поверхностным загрязнением внутри саркофага. Что касается остатков топлива в виде пыли (крупные и мелкие "горячие" частицы), то большая ее часть осела под слоями сброшенных во время ликвидации аварии материалов. 17(±5) С‚ [26] находится в верхних этажах помещений 4-го энергоблока и в центральном зале. По оценкам Комплексной экспедиции ИАЭ им. И.В.Курчатова, в центральном зале на поверхности 1 - 1,5 С‚ пыли.
Таблица 1.1.2
Ежесуточный выброс (Q) радиоактивных веществ в атмосферу из аварийного энергоблока (без радиоактивных благородных газов)*
Дата 1986 г.
|
Время после аварии, сут
|
Q, МКи
|
Дата 1986 г.
|
Время после аварии, сут
|
Q, МКи**
|
26.04
|
0
|
12
|
03.05
|
7
|
5,0
|
27.04
|
1
|
4,0
|
04.05
|
8
|
7,0
|
28.04
|
2
|
3,4
|
05.05
|
9
|
8,0
|
29.04
|
3
|
2,6
|
06.05
|
10
|
0,1
|
30.04
01.05
|
4
5
|
2,0
2,0
|
09.05
23.05
|
14
28
|
0,01
20* 10-6
|
02.05
|
6
|
4,0
|
|
|
|
* Погрешность оценки Q ±50 %. Она определяется погрешностью дозиметрических приборов, радиометрических измерений радионуклидного состава проб воздуха и почвы, а также погрешностью, обусловленной усреднением выпадения на площади.
** Значения Q пересчитаны на 6 мая 1986 г. с учетом радиоактивного распада. В момент выброса 26 апреля 1986 г. активность составляла 20 - 22 Мки
Лавообразные топливосодержащие массы (ТСМ) попали на нижние этажи - в бассейн-барбатер второго этажа, парораспределительный коридор, предаппаратное помещение, коридоры и помещения третьего этажа, примыкающие к реактору. Общее количество топлива, находящегося в лавах, составляет 135 (±30) С‚ [26].
Использовав в качестве основного теплометрический метод, специалисты вышеупомянутой Комплексной экспедиции смогли определить местонахождение и количество ядерного топлива по периферийным измерениям температуры и тепловых потоков. Лавообразные ТСМ разделены на следующие виды:
шоколадно-коричневая и антрацитно-черная керамика в парораспределительном коридоре и "слоновой ноге" в помещении 217;
пемзообразная масса в бассейнах-барбатерах первого и второго этажей. Это рассыпчатые куски серо-коричневого цвета, образовавшиеся предположительно при первоначальном контакте высокотемпературной лавы с водой, вспененной мгновенно выделившимся паром;
шлакообразные массы в парораспределительныйј коридоре и бассейнах-барбатерах. Они занимают промежуточное положение между керамикой и пемзой и имеют либо красно-коричневую, либо иссинл-черную окраску.
Содержание топлива в этих массах составляет в среднем 10 % веса [26]. Установлено, что со временем состояние ТСМ изменяется. В феврале 1989 г. в парораспределительный коридоре черная лава имела блестящую стекловидную поверхность. В 1990 г. поверхность ее стала грязно-черной и на ней появились ярко-желтые пятна и разводы размерами 1-2 смј. Механизмы разрушения лав ТСМ пока не установлены, но, несомненно, они связаны с мощными облучениями альфа-, бета- и гамма-частицами.
В заключение приведем выводы Комплексной экспедиции ИАЭ им. И.В.Курчатова относительно общего количества топлива, оставшегося в саркофаге. Согласно балансу между выброшенным топливом и первоначальным его количеством в саркофагедолжно находится180 т урана, из которых ТСМ составляют приблизительно 150 т. Оставшиеся 30 т могут быть в центральном зале (примерно 15 т), под северной каскадной стеной и в других помещениях 4-го энергоблока.
Достарыңызбен бөлісу: |