Эндокринология


а. При болезни кленового сиропа



жүктеу 15.47 Mb.
бет60/96
Дата13.09.2017
өлшемі15.47 Mb.
1   ...   56   57   58   59   60   61   62   63   ...   96

а. При болезни кленового сиропа применяют смесь аминокислот с разветвленным радикалом (лейцина, изолейцина и валина). Эти аминокислоты получают из натуральных продуктов. Периодически определяют концентрацию аминокислот в плазме и корректируют содержание лейцина, изолейцина и валина в питательной смеси. У грудных детей потребление аминокислот в пересчете на азот должно быть не менее 1,5 г/кг/сут, а в старшем возрасте — 1 г/кг/сут. Напомним, что 1 г азота содержится в 6,25 г белка.

б. При нарушениях цикла мочевины используют смеси незаменимых аминокислот. Их назначают в небольших количествах, чтобы не допустить гипераммониемии. Смеси незаменимых аминокислот для в/в введения не выпускаются, поэтому их назначают внутрь. Нужное количество аминокислот можно растворить в очень небольшом объеме. Иногда для длительной инфузионной терапии требуются самодельные аминокислотные смеси, которые готовят из имеющихся в продаже нетоксичных кристаллических аминокислот. Эти смеси можно получить также в некоторых центрах, специализирующиеся на лечении наследственных нарушений метаболизма.

в. Гипераммониемия, не связанная с первичным нарушением метаболизма аминокислот, требует особого подхода. При уровне аммиака 500 мкг%, угрожающем поражением ЦНС, проводят перитонеальный диализ. Постоянно контролируют ВЧД. У новорожденных применяют неинвазивные методы мониторинга или наблюдают за родничком. У детей старшего возраста иногда требуется измерение ВЧД с помощью субдуральной или субарахноидальной канюли-болта. Лечение: осмотические средства (маннитол); снижение объема внеклеточной жидкости (диализ); барбитуратная кома (эффективность не доказана); ИВЛ в режиме гипервентиляции. Предполагают, что ИВЛ в режиме гипервентиляции способствует переходу аммиака в клетки. Поэтому такой метод лечения надо применять с осторожностью. Назначают в/в инфузию бензойной кислоты (в виде бензоата натрия) в дозе 500 мг/кг/сут (можно вводить нагрузочную дозу 500 мг/кг в течение 1 ч) и фенилацетата натрия в дозе 250—500 мг/кг/сут. После снижения уровня аммиака дозу бензойной кислоты уменьшают до 250 мг/кг/сут, а фенилацетат отменяют (чтобы персонал не страдал от неприятного запаха препарата).

г. Аргинин — один из продуктов цикла мочевины. Аргинин в норме не относится к незаменимым аминокислотам, но почти при всех нарушениях цикла мочевины он образуется в недостаточном количестве. При подозрении на нарушение цикла мочевины всегда назначают аргинин в дозе 1 ммоль/кг/сут. При цитруллинемии и, особенно, аргининянтарной ацидемии аргинин в дозах до 6 ммоль/кг/сут устраняет гипераммониемию. Для в/в введения можно использовать аргинина гидрохлорид, который обычно применяют при исследовании секреции СТГ (1 ммоль аргинина соответствует 0,21 г аргинина гидрохлорида). Надо помнить, что в/в введение аргинина может вызвать гиперхлоремический ацидоз.

В. Длительное лечение. Общие правила такие же, как при лечении острых нарушений метаболизма. Ограничивают прием субстратов и вводят продукты нарушенных биохимических реакций; ограничивают прием белка или других метаболитов; поддерживают максимальную активность фермента; стараются избежать усиления катаболизма. Лечение назначает и контролирует специалист по наследственным нарушениям обмена веществ.

1. Гиперфенилаланинемии. Гиперфенилаланинемии — очень хорошо изученная группа заболеваний. Все они обусловлены нарушениями обмена фенилаланина. На примере этих болезней удобнее всего объяснять принципы диагностики и лечения наследственных нарушений обмена веществ.

а. Схема метаболизма фенилаланина представлена на рис. 36.1. У большинства больных с гиперфенилаланинемией имеется частичная или полная недостаточность апофермента фенилаланингидроксилазы. Примерно у 1% больных нарушен синтез или восстановление дигидробиоптерина — кофактора фенилаланингидроксилазы. Восстановленная форма кофактора, тетрагидробиоптерин, участвует также в гидроксилировании тирозина и триптофана с образованием L-ДОФА и серотонина. Недостаточность фермента приводит к дефициту этих медиаторов, который проявляется другим заболеванием, труднее поддающимся лечению. Поэтому у всех больных с гиперфенилаланинемией необходимо определять не только активность фермента, но и уровень кофактора.

б. Полная недостаточность фенилаланингидроксилазы обычно сопровождается значительным повышением концентрации фенилаланина в плазме (> 1200 ммоль/л) и требует пожизненного ограничения приема фенилаланина с пищей, чтобы его уровень не превышал 600 ммоль/л. Это классическая фенилкетонурия. При частичной недостаточности фенилаланингидроксилазы накапливается меньше фенилаланина. Цель лечения: снизить уровень фенилаланина до 600 ммоль/л (по возможности еще ниже).

в. Лечение. Ограничивают прием фенилаланина с пищей; назначают вегетарианскую диету с добавлением белковых или аминокислотных смесей, не содержащих фенилаланин либо содержащих его в небольших количествах. Белковые или аминокислотные смеси должны включать достаточно незаменимых аминокислот.

г. Ранее было принято прекращать диетотерапию начиная с 6 лет (поскольку головной мозг наиболее чувствителен к токсическому действию фенилаланина именно до этого возраста). В последнее время установлено, что головной мозг страдает от избытка фенилаланина на протяжении всей жизни, поэтому диету не отменяют. Правильное лечение позволяет предупредить умственную отсталость и сохранить работоспособность. Прогнозировать отдаленные последствия заболевания (через 20—30 лет) трудно.

д. Разработка и широкое внедрение методов лечения фенилкетонурии привели к тому, что многие больные женщины достигли детородного возраста. У детей таких женщин нередко наблюдаются микроцефалия и врожденные пороки сердца; повышен риск умственной отсталости. Поскольку дети женщин с фенилкетонурией являются носителями только одного рецессивного мутантного гена фенилаланингидроксилазы, нарушения развития у них объясняются повышенным уровнем фенилаланина в крови беременной (материнская фенилкетонурия). Уровень фенилаланина, безопасный для беременной и не препятствующий нормальному постнатальному развитию, может быть опасным для плода. Поэтому концентрация фенилаланина в плазме беременной не должна превышать 350 ммоль/л. Беременным с фенилкетонурией назначают диету с ограничением фенилаланина.

Литература

1. Fernandes J, Saudubray J-M, Tada K (eds), Inborn Metabolic Diseases: Diagnosis and Treatment. Heidelberg: Springer, 1990.

2. McKusick VA. Mendelian Inheritance in Man (10th ed). Baltimore: Johns Hopkins Press, 1992.

3. Scriver CR, et al (eds). The Metabolic Basis of Inherited Disease (6th ed). New York: McGraw-Hill, 1989.

Глава 37. Гликогенозы

Д. Вулфсдорф, Д. Криглер-младший



I. Общие сведения. Под этим названием объединяют синдромы, обусловленные наследственными дефектами ферментов, участвующих в синтезе или расщеплении гликогена. Все эти дефекты приводят к нарушениям накопления гликогена в разных тканях, особенно в печени и мышцах.

А. Структура гликогена. Гликоген — единственный резервный полисахарид — содержится во всех клетках. Это сильно разветвленный полимер, состоящий из остатков глюкозы. На 10 остатков глюкозы приходится в среднем одна боковая цепь. В главных и боковых цепях гликогена остатки глюкозы соединены альфа-1,4-гликозидными связями. В местах ветвления образуются альфа-1,6-гликозидные связи. Основные депо гликогена — печень и скелетные мышцы. При употреблении большого количества углеводов содержание гликогена в печени составляет 5 г на 100 г сырого веса, в мышцах — 2 г на 100 г. Поскольку общий вес мышц больше веса печени, основной запас гликогена содержится в скелетных мышцах.

Б. Метаболизм гликогена (см. рис. 37.1)

1. Синтез гликогена. Исходное вещество для синтеза гликогена — глюкозо-6-фосфат. Глюкозо-6-фосфат образуется главным образом из глюкозы путем ее фосфорилирования. В печени, мышцах и других тканях эту реакцию катализирует гексокиназа. В печени имеется особая форма гексокиназы — глюкокиназа, которая вступает в действие только при сильном повышении концентрации глюкозы в крови. Глюкозо-6-фосфат может синтезироваться и из неуглеводных субстратов глюконеогенеза (лактата, пирувата, аминокислот). В мышцах глюкозо-6-фосфат синтезируется преимущественно из глюкозы крови. Печень способна к интенсивному глюконеогенезу, особенно после мышечной работы, когда в крови накапливается много лактата. Глюкозо-6-фосфат превращается в глюкозо-1-фосфат, из которого синтезируются цепи гликогена. Образование альфа-1,4-связей катализирует гликогенсинтетаза; для образования альфа-1,6-связей необходим 1,4-альфа-глюкан-ветвящий фермент.

Глюкозо-6-фосфат превращается не только в гликоген. В печени при гидролизе глюкозо-6-фосфата образуется глюкоза. Эта реакция катализируется глюкозо-6-фосфатазой. Другие пути метаболизма глюкозо-6-фосфата: гликолиз (при этом образуются пируват и лактат) и пентозофосфатный путь (при этом образуется рибозо-5-фосфат). В норме между всеми процессами метаболизма глюкозо-6-фосфата поддерживается равновесие.



2. Расщепление гликогена (гликогенолиз) включает несколько этапов. Сначала фосфорилаза последовательно отщепляет остатки глюкозы от концов боковых цепей гликогена. При этом фосфорилируются альфа-1,4-связи и образуются молекулы глюкозо-1-фосфата. Фосфорилаза атакует боковую цепь до тех пор, пока не дойдет до точки, отстоящей на 4 остатка глюкозы от места ветвления (т. е. от альфа-1,6-связи). Затем вступает в действие система отщепления боковых цепей гликогена. Первый фермент этой системы — 4-альфа-D-глюканотрансфераза — отщепляет 3 из 4 остатков глюкозы и переносит их на свободный конец другой боковой цепи. Второй фермент — амило-1,6-глюкозидаза — отщепляет от главной цепи четвертый остаток глюкозы. После этого главная цепь гликогена становится доступной для фосфорилазы. В реакции, катализируемой амило-1,6-глюкозидазой, образуется глюкоза. У здоровых людей при голодании до 8% гликогена печени расщепляется амило-1,6-глюкозидазой до глюкозы, а 92% гликогена расщепляется фосфорилазой до глюкозо-1-фосфата. Под действием фосфоглюкомутазы глюкозо-1-фосфат превращается в глюкозо-6-фосфат, при гидролизе которого в печени образуется глюкоза, поступающая в кровь. Таким образом, основное количество глюкозы при голодании образуется в печени из глюкозо-6-фосфата.

II. Классификация, биохимическая и клиническая характеристика гликогенозов. Общепринятая номенклатура гликогенозов пока не разработана. Мы используем классификацию, построенную по хронологическому принципу: типы гликогенозов обозначаются римскими цифрами и располагаются в порядке открытия синдромов и соответствующих ферментных дефектов. Названия типов гликогенозов, их синонимы и важнейшие характеристики (ферментные дефекты, способы наследования, особенности структуры и накопления гликогена) приведены в табл. 37.1. В этой же таблице перечислены ткани и клетки, в которых легче всего выявляются ферментные дефекты.

Некоторые типы гликогенозов (0, I, III, VI, IX) сопровождаются тяжелой гипогликемией голодания. Поэтому эндокринологи чаще всего сталкиваются именно с этими типами гликогенозов. Клинические проявления и биохимические нарушения при гликогенозах, сопровождающихся гипогликемией голодания, перечислены в табл. 37.2.



III. Гликогенозы, сопровождающиеся гипогликемией голодания

А. Недостаточность гликогенсинтетазы (гликогеноз типа 0)

1. Патогенез. Это очень редкое заболевание обусловлено отсутствием активности гликогенсинтетазы в печени. У больных с гликогенозом типа 0 содержание гликогена в печени через 4—6 ч после еды в 10 раз ниже, чем у здоровых людей. Наследование аутосомно-рецессивное. Из-за нарушения синтеза гликогена основное количество глюкозы превращается в лактат в ходе гликолиза. Глюкагон стимулирует глюконеогенез и приводит к превращению лактата в глюкозу.

2. Клиническая картина. Если больной не поел перед сном, вскоре после пробуждения возникает гипогликемия. Для гликогеноза типа 0 характерно своеобразное нарушение метаболизма — тяжелая гипогликемия с кетоацидозом утром натощак и гипергликемия с лактацидозом днем после еды. Печень не увеличена. Гликогеноз типа 0 следует заподозрить у любого ребенка с гипогликемией голодания.

3. Лабораторная диагностика

а. Обязательные исследования. Определяют концентрацию глюкозы, кетоновых тел и лактата натощак и после еды. Характерный признак гликогеноза типа 0 — гипогликемия с кетоацидозом натощак, гипергликемия и лактацидоз после еды.

б. Провокационные пробы. Прием глюкозы в дозе 1,75 г/кг утром натощак вызывает гипергликемию и лактацидоз, а прием аланина (500 мг/кг) повышает уровень глюкозы, но не влияет на уровень лактата. Введение глюкагона (30 мкг/кг, в/м) утром натощак не влияет на уровень глюкозы; введение глюкагона через 3 ч после приема богатой углеводами пищи снижает уровень лактата и значительно повышает уровень глюкозы.

в. Специальные исследования. Производят биопсию печени и скелетных мышц, а также получают эритроциты и фибробласты кожи для определения активности гликогенсинтетазы. Активность фермента в печени не определяется, но обнаруживается в мышцах, эритроцитах и фибробластах.

4. Лечение. Цель лечения — предупредить тяжелую гипогликемию. Назначают диету, богатую белками и углеводами. Питание должно быть частым (каждые 4 ч). Белки служат источником аминокислот — субстратов глюконеогенеза; они уменьшают углеводную нагрузку, приводящую к гипергликемии и лактацидозу. Такая диета предотвращает гипогликемию и кетоацидоз натощак, уменьшает гипергликемию и лактацидоз после еды и способствует ускорению роста.

Б. Гликогеноз типа I

Эта болезнь была описана Гирке в 1929 г., однако ферментный дефект был установлен Кори только в 1952 г. Гликогеноз типа I встречается у 1 из 200 000 новорожденных. Заболеваемость мальчиков и девочек одинакова. Наследование аутосомно-рецессивное.



1. Патогенез

а. Заболевание обусловлено дефектами ферментной системы печени, превращающей глюкозо-6-фосфат в глюкозу. Нарушается как гликогенолиз, так и глюконеогенез, что приводит к гипогликемии голодания с лактацидозом, гиперурикемии и гипертриглицеридемии. В печени накапливается избыток гликогена.

б. Ферментная система, превращающая глюкозо-6-фосфат в глюкозу, содержит не менее 5 субъединиц: глюкозо-6-фосфатазу (катализирует гидролиз глюкозо-6-фосфата в просвете эндоплазматического ретикулума), регуляторный Ca2+-связывающий белок и белки-переносчики (транслоказы) T1, T2 и T3, которые обеспечивают переход глюкозо-6-фосфата, фосфата и глюкозы через мембрану эндоплазматического ретикулума.

в. Дефект глюкозо-6-фосфатазы (гликогеноз типа Ia) и дефект глюкозо-6-фосфат-транслоказы (гликогеноз типа Ib) проявляются сходными клиническими и биохимическими нарушениями. Чтобы подтвердить диагноз и точно установить ферментный дефект, необходима биопсия печени и исследование активности глюкозо-6-фосфатазы (см. гл. 37, п. III.Б.3.в).

2. Клиническая картина

а. Клинические проявления у новорожденных, грудных детей и детей старшего возраста неодинаковы. Причина — различия рациона и режима питания в этих возрастных группах.

1) Иногда в первые дни и недели жизни возникает гипогликемия голодания, однако в большей части случаев болезнь протекает бессимптомно, поскольку грудной ребенок часто питается и получает достаточное количество глюкозы. Нередко болезнь диагностируют через несколько месяцев после рождения, когда у ребенка обнаруживают увеличение живота и гепатомегалию. Бывают одышка и субфебрильная температура без признаков инфекции. Одышка вызвана гипогликемией и лактацидозом из-за недостаточной продукции глюкозы. Когда интервалы между кормлениями увеличиваются и ребенок начинает спать ночью, появляются симптомы гипогликемии, особенно по утрам. Тяжесть и длительность гипогликемии постепенно увеличиваются, что приводит к системным метаболическим нарушениям.

2) Если лечение не проводят, изменяется внешность ребенка. Характерны гипотрофия мышц и скелета, задержка роста и физического развития, отложение жира под кожей. Ребенок становится похож на больного с синдромом Кушинга. Развитие познавательных и социальных навыков не страдает, если только повторные приступы гипогликемии не вызвали повреждения головного мозга. Если ребенок не получает достаточного количества углеводов и гипогликемия голодания сохраняется, то задержка роста и физического развития становится резко выраженной. Некоторые дети с гликогенозом типа I умирают от легочной гипертензии.

3) Нарушение функции тромбоцитов проявляется повторными носовыми кровотечениями или кровоточивостью после стоматологических и других хирургических вмешательств. Отмечаются нарушения адгезии и агрегации тромбоцитов; нарушено также высвобождение АДФ из тромбоцитов в ответ на адреналин и контакт с коллагеном. Тромбоцитопатия вызвана системными метаболическими нарушениями; после лечения она исчезает.

4) УЗИ и экскреторная урография выявляют увеличение почек. У большинства больных выраженных нарушений функции почек не бывает, отмечается лишь повышение СКФ. В очень тяжелых случаях может развиться тубулопатия с глюкозурией, фосфатурией, гипокалиемией и аминоацидурией (как при синдроме Фанкони). У подростков иногда наблюдается альбуминурия, а у молодых людей часто развивается тяжелое поражение почек с протеинурией, повышением АД и падением клиренса креатинина, обусловленное фокально-сегментарным гломерулосклерозом и интерстициальным фиброзом. Эти нарушения приводят к терминальной почечной недостаточности.

5) Селезенка не увеличена.

6) Без лечения резко возрастают уровни свободных жирных кислот, триглицеридов и апопротеина C-III, который участвует в транспорте триглицеридов и богатых триглицеридами липопротеидов. Уровни фосфолипидов и холестерина повышаются умеренно. Очень высокий уровень триглицеридов обусловлен их чрезмерной продукцией в печени и снижением их периферического метаболизма из-за снижения активности липопротеидлипазы. При тяжелой гиперлипопротеидемии на разгибательных поверхностях конечностей и ягодицах могут появляться эруптивные ксантомы.

7) Отсутствие лечения или неправильное лечение приводят к задержке роста и полового развития.

8) Аденомы печени по неизвестным причинам возникают у многих больных, обычно в возрасте 10—30 лет. Аденомы могут малигнизироваться, возможны кровоизлияния в аденому. На сцинтиграммах печени аденомы выглядят как участки пониженного накопления изотопа. Для обнаружения аденом применяют УЗИ. При подозрении на злокачественный рост более информативны МРТ и КТ, позволяющие проследить превращение небольшого четко отграниченного новообразования в более крупное, с размытыми краями. Рекомендуется периодически измерять уровень альфа-фетопротеина в сыворотке (это маркер печеночноклеточного рака).

9) С возрастом тяжесть гипогликемии голодания уменьшается. Вес тела растет быстрее, чем вес головного мозга, поэтому соотношение между скоростью продукции и утилизации глюкозы становится более выгодным. Скорость продукции глюкозы возрастает за счет активности амило-1,6-глюкозидазы в печени и мышцах. В результате уровень глюкозы натощак постепенно повышается.



б. Клинические проявления гликогеноза типа Ia и типа Ib одинаковы, но при гликогенозе типа Ib наблюдается постоянная или преходящая нейтропения. В тяжелых случаях развивается агранулоцитоз. Нейтропения сопровождается дисфункцией нейтрофилов и моноцитов, поэтому повышается риск стафилококковых инфекций и кандидоза. У некоторых больных возникает воспалительное заболевание кишечника, напоминающее болезнь Крона.

3. Лабораторная диагностика

а. Обязательные исследования. Измеряют уровни глюкозы, лактата, мочевой кислоты и активность ферментов печени натощак. У новорожденных и грудных детей с гликогенозом типа I уровень глюкозы в крови после 3—4-часового голодания падает до 2,2 ммоль/л и ниже. Если продолжительность голодания превышает 4 ч, уровень глюкозы почти всегда меньше 1,1 ммоль/л. Гипогликемия сопровождается значительным повышением уровня лактата и метаболическим ацидозом. Сыворотка обычно мутная или похожа на молоко из-за очень высокого содержания триглицеридов и умеренно повышенного содержания холестерина. Отмечаются также гиперурикемия и повышение активности АсАТ и АлАТ.

б. Провокационные пробы

1) Чтобы отличить гликогеноз типа I от других гликогенозов и точно определить ферментный дефект, у грудных детей и детей старшего возраста измеряют уровень метаболитов (глюкозы, свободных жирных кислот, кетоновых тел, лактата и мочевой кислоты) и гормонов (инсулина, глюкагона, адреналина, кортизола и СТГ) натощак и после приема глюкозы.



Схема исследования: ребенку дают глюкозу внутрь в дозе 1,75 г/кг, затем каждые 1—2 ч берут кровь. В каждой пробе быстро измеряют концентрацию глюкозы. Последнюю пробу берут не позже чем через 6 ч после приема глюкозы либо в тот момент, когда концентрация глюкозы снизилась до 2,2 ммоль/л.

2) Проба с глюкагоном. Глюкагон вводят в/м или в/в струйно в дозе 30 мкг/кг (но не более 1 мг) через 4—6 ч после еды или приема глюкозы (см. гл. 37, п. III.Б.3.б.1). Кровь для определения глюкозы и лактата берут за 1 мин до инъекции глюкагона и через 15, 30, 45, 60, 90 и 120 мин после инъекции. При гликогенозе типа I глюкагон не повышает либо незначительно повышает уровень глюкозы, тогда как исходно повышенный уровень лактата продолжает нарастать (см. табл. 37.2).



в. Специальные исследования

1) Проводят биопсию печени, исследуют гликоген. Содержание гликогена сильно увеличено, но структура его нормальная.

2) Чтобы точно установить ферментный дефект, лежащий в основе гликогеноза типа I, измеряют активность глюкозо-6-фосфатазы в цельных и разрушенных микросомах печени (по образованию глюкозы и фосфата из глюкозо-6-фосфата). Микросомы разрушают повторным замораживанием и оттаиванием биоптата. При гликогенозе типа Ia активность глюкозо-6-фосфатазы не определяется ни в цельных, ни в разрушенных микросомах. При гликогенозе типа Ib активность глюкозо-6-фосфатазы в разрушенных микросомах нормальная, а в цельных микросомах отсутствует или сильно снижена (поскольку дефектная глюкозо-6-фосфат-транслоказа не переносит глюкозо-6-фосфат через мембраны микросом). В последнее время для диагностики гликогенозов применяют методы молекулярной биологии (выявление генетического дефекта путем ПЦР и последующей гибридизации со специфическими олигонуклеотидами). Все эти методики доступны только специализированным лабораториям. Мы даем координаты двух таких лабораторий: Dr. YT Chen, Division of Genetics and Metabolism, Duke University Medical Center, Durham, North Carolina, U.S.A.; Dr. R Grier, Biocemical Genetics Laboratory, Nemours Children's Clinic, Jacksonville, Florida, U.S.A.

4. Лечение. Метаболические нарушения при гликогенозе типа I, обусловленные недостаточной продукцией глюкозы, возникают уже через несколько часов после еды, а при длительном голодании значительно усиливаются. Поэтому лечение гликогеноза типа I сводится к частому кормлению ребенка. Цель лечения — предупредить падение концентрации глюкозы в крови ниже 4,2 ммоль/л — порогового уровня, при котором происходит стимуляция секреции контринсулярных гормонов. Если ребенок своевременно получает достаточное количество глюкозы, размеры печени уменьшаются, лабораторные показатели приближаются к норме, кровоточивость исчезает, рост и психомоторное развитие нормализуются.

а. Восполнение потребности в глюкозе

1) Скорость продукции глюкозы (при гликогенолизе и глюконеогенезе) у здоровых людей выражается формулой: y = 0,0014(x3) – 0,214(x2) + 10,411(x) – 9,084, где y — скорость образования глюкозы, мг/мин; x — вес, кг.

По этой формуле можно приблизительно рассчитать количество глюкозы, необходимое больному гликогенозом типа I. Для коррекции количества глюкозы и схемы лечения каждые 3—6 мес определяют лабораторные показатели, перечисленные в гл. 37, п. III.Б.3.а.

2) Глюкозу или содержащие ее полимеры дают ребенку круглосуточно с небольшими интервалами либо вводят непрерывно через назогастральный зонд или гастростому. Начиная с 6—8 мес применяют частое кормление сырым кукурузным крахмалом.

3) Грудным детям дают питательные смеси или молоко, содержащие глюкозу в количестве, рассчитанном по формуле; днем — каждые 2—3 ч, ночью — каждые 3 ч. Если ночные кормления затруднительны, смеси или молоко вводят через назогастральный зонд инфузионным насосом или (при непереносимости такого лечения) через гастростому.

4) Сырой кукурузный крахмал создает запас глюкозы в кишечнике, откуда она медленно всасывается в кровь, поэтому применение сырого крахмала позволяет обойтись без частого круглосуточного кормления и зондового питания. Кормление сырым крахмалом дает хорошие результаты начиная с 8-месячного возраста. Крахмал размешивают в подслащенной воде, молоке или питательной смеси и дают каждые 3—5 ч днем и каждые 4—5 ч ночью. Нужное количество крахмала рассчитывают по формуле. Схему лечения периодически корректируют.

5) Правильное лечение предотвращает или устраняет гиперурикемию и гиперлипопротеидемию. Если гиперурикемия сохраняется, назначают ингибитор ксантиноксидазы аллопуринол (5—10 мг/кг/сут внутрь в 3 приема). Гиполипидемические средства (никотиновую кислоту или, при ее непереносимости, гемфиброзил) для длительного лечения гликогеноза типа I применяют редко. Их назначают в тех случаях, когда диетотерапия не устраняет тяжелую гиперлипопротеидемию, угрожающую развитием острого панкреатита или атеросклероза.

б. Общее количество пищи определяется в основном аппетитом ребенка. Общая калорийность пищи не ограничивается, если только нет чрезмерной прибавки в весе. Пища должна содержать белки, жиры, минеральные соли и витамины в количествах, необходимых для нормального роста ребенка. Основные источники этих веществ — молочные продукты и фрукты. Поскольку молоко и фрукты содержат, соответственно, галактозу и фруктозу, их рекомендуется давать в умеренных количествах. На долю жиров должно приходиться не более 20% общей калорийности пищи. Калорийность жиров должна быть поровну распределена между мононенасыщенными, полиненасыщенными и насыщенными жирными кислотами. Холестерин ограничивают до 300 мг/сут. Углеводы (преимущественно полисахариды) должны составлять 60—65% общей калорийности. На долю сырого кукурузного крахмала должно приходиться 30—45% общей калорийности пищи.




Достарыңызбен бөлісу:
1   ...   56   57   58   59   60   61   62   63   ...   96


©kzref.org 2019
әкімшілігінің қараңыз

    Басты бет