Сборник текстов на казахском, русском, английском языках для формирования навыков по видам речевой деятельности обучающихся уровней среднего образования

 бет 34/67 Дата 13.09.2017 өлшемі 7.37 Mb. #833

Conservation law

Conservation laws are fundamental to our understanding of the physical world, in that they describe which processes can or cannot occur in nature. For example, the conservation law of energy states that the total quantity of energy in an isolated system does not change, though it may change form. In general, the total quantity of the property governed by that law remains unchanged during physical processes. With respect to classical physics, conservation laws include conservation of energy, mass (or matter), linear momentum, angular momentum, and electric charge. With respect to particle physics, particles cannot be created or destroyed except in pairs, where one is ordinary and the other is an antiparticle. With respect to symmetries and invariance principles, three special conservation laws have been described, associated with inversion or reversal of space, time, and charge.

Conservation laws are considered to be fundamental laws of nature, with broad application in physics, as well as in other fields such as chemistry, biology, geology, and engineering.

Most conservation laws are exact, or absolute, in the sense that they apply to all possible processes. Some conservation laws are partial, in that they hold for some processes but not for others.

One particularly important result concerning conservation laws is Noether's theorem, which states that there is a one-to-one correspondence between each one of them and a differentiable symmetry in the system. For example, the conservation of energy follows from the time-invariance of physical systems, and the fact that physical systems behave the same regardless of how they are oriented in space gives rise to the conservation of angular momentum.

1. Oscillation and Wave

Oscillation is the repetitive variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. The term vibration is precisely used to describe mechanical oscillation. Familiar examples of oscillation include a swingingpendulum and alternating current power.

Oscillations occur not only in mechanical systems but also in dynamic systems in virtually every area of science: for example the beating human heartbusiness cycles in economicspredator–prey population cycles in ecology, geothermal geysers in geology, vibrating strings in musical instruments, periodic firing of nerve cells in the brain, and the periodic swelling of Cepheid variable stars in astronomy.

The simplest mechanical oscillating system is a weight attached to a linear spring subject to only weight and tension. Such a system may be approximated on an air table or ice surface. The system is in an equilibrium state when the spring is static. If the system is displaced from the equilibrium, there is a net restoring force on the mass, tending to bring it back to equilibrium. However, in moving the mass back to the equilibrium position, it has acquired momentum which keeps it moving beyond that position, establishing a new restoring force in the opposite sense. If a constant force such as gravity is added to the system, the point of equilibrium is shifted. The time taken for an oscillation to occur is often referred to as the oscillatory period.

Systems where the restoring force on a body is directly proportional to its displacement, such as the dynamics of the spring-mass system, are described mathematically by thesimple harmonic oscillator and the regular periodic motion is known as simple harmonic motion. In the spring-mass system, oscillations occur because, at the static equilibrium displacement, the mass has kinetic energy which is converted into potential energy stored in the spring at the extremes of its path. The spring-mass system illustrates some common features of oscillation, namely the existence of an equilibrium and the presence of a restoring force which grows stronger the further the system deviates from equilibrium.

In physics, a wave is an oscillation accompanied by a transfer of energy that travels through medium (space or mass). Frequency refers to the addition of time. Wave motiontransfers energy from one point to another, which displace particles of the transmission medium — that is, with little or no associated mass transport. Waves consist, instead, ofoscillations or vibrations (of a physical quantity), around almost fixed locations.

There are two main types of waves. Mechanical waves propagate through a medium, and the substance of this medium is deformed. The deformation reverses itself owing torestoring forces resulting from its deformation. For example, sound waves propagate via air molecules colliding with their neighbors. When air molecules collide, they also bounce away from each other (a restoring force). This keeps the molecules from continuing to travel in the direction of the wave.

The second main type of wave, electromagnetic waves, do not require a medium. Instead, they consist of periodic oscillations of electrical and magnetic fields originally generated by charged particles, and can therefore travel through a vacuum. These types of waves vary in wavelength, and include radio wavesmicrowavesinfrared radiationvisible light,ultraviolet radiationX-rays, and gamma rays.

Waves are described by a wave equation which sets out how the disturbance proceeds over time. The mathematical form of this equation varies depending on the type of wave. Further, the behavior of particles in quantum mechanics are described by waves. In addition, gravitational waves also travel through space, which are a result of a vibration or movement in gravitational fields.

A wave can be transverse or longitudinal. Transverse waves occur when a disturbance creates oscillations that are perpendicular to the propagation of energy transfer. Longitudinal waves occur when the oscillations are parallel to the direction of energy propagation. While mechanical waves can be both transverse and longitudinal, all electromagnetic waves are transverse in free space.
3.Thermal Physics

3.1 Molecular physics

Molecular physics is the study of the physical properties of molecules, the chemical bonds between atoms as well as the molecular dynamics. Its most important experimental techniques are the various types of spectroscopyscattering is also used. The field is closely related to atomic physics and overlaps greatly with theoretical chemistryphysical chemistry and chemical physics.

Additionally to the electronic excitation states which are known from atoms, molecules are able to rotate and to vibrate. These rotations and vibrations are quantized, there are discrete energy levels. The smallest energy differences exist between different rotational states, therefore pure rotational spectra are in the far infrared region (about 30 - 150 µmwavelength) of the electromagnetic spectrum. Vibrational spectra are in the near infrared (about 1 - 5 µm) and spectra resulting from electronic transitions are mostly in the visible and ultraviolet regions. From measuring rotational and vibrational spectra properties of molecules like the distance between the nuclei can be calculated.

One important aspect of molecular physics is that the essential atomic orbital theory in the field of atomic physics expands to the molecular orbital theory.

Molecular modelling encompasses all theoretical methods and computational techniques used tomodel or mimic the behaviour of molecules. The techniques are used in the fields of computational chemistrydrug designcomputational biology and materials science for studying molecular systems ranging from small chemical systems to large biological molecules and material assemblies. The simplest calculations can be performed by hand, but inevitably computers are required to perform molecular modelling of any reasonably sized system. The common feature of molecular modelling techniques is the atomistic level description of the molecular systems. This may include treating atoms as the smallest individual unit (the Molecular mechanics approach), or explicitly modeling electrons of each atom (thequantum chemistry approach).

Достарыңызбен бөлісу: