## **Generalization**
In special relativity, the conservation of mass does not apply if the system is open and energy escapes. However, it does continue to apply to totally closed (isolated) systems. If energy cannot escape a system, its mass cannot decrease. In relativity theory, so long as any type of energy is retained within a system, this energy exhibits mass.
Also, mass must be differentiated from matter (see below), since matter may *not* be perfectly conserved in isolated systems, even though mass is always conserved in such systems. However, matter is so nearly conserved in chemistry that violations of matter conservation were not measured until the nuclear age, and the assumption of matter conservation remains an important practical concept in most systems in chemistry and other studies that do not involve the high energies typical of radioactivity and nuclear reactions.
### **The mass associated with chemical amounts of energy is too small to measure**
The change in mass of certain kinds of open systems where atoms or massive particles are not allowed to escape, but other types of energy (such as light or heat) are allowed to enter or escape, went unnoticed during the 19th century, because the change in mass associated with addition or loss of small quantities of thermal or radiant energy in chemical reactions is very small. (In theory, mass would not change at all for experiments conducted in isolated systems where heat and work were not allowed in or out.)
The theoretical association of all energy with mass was made by Albert Einstein in 1905. However Max Planck pointed out that the change in mass of systems as a result of extraction or addition of chemical energy, as predicted by Einstein's theory, is so small that it could not be measured with available instruments, for example as a test of Einstein's theory. Einstein speculated that the energies associated with newly discovered radioactivity were significant enough, compared with the mass of systems producing them, to enable their mass-change to be measured, once the energy of the reaction had been removed from the system. This later indeed proved to be possible, although it was eventually to be the first artificial nuclear transmutation reaction in 1932, demonstrated by Cockcroft and Walton, that proved the first successful test of Einstein's theory regarding mass-loss with energy-loss.
### **Mass conservation remains correct if energy is not lost**
The conservation of relativistic mass implies the viewpoint of a single observer (or the view from a single inertial frame) since changing inertial frames may result in a change of the total energy (relativistic energy) for systems, and this quantity determines the relativistic mass.
The principle that the mass of a system of particles must be equal to the sum of their rest masses, even though true in classical physics, may be false in special relativity. The reason that rest masses cannot be simply added is that this does not take into account other forms of energy, such as kinetic and potential energy, and massless particles such as photons, all of which may (or may not) affect the total mass of systems.
For moving massive particles in a system, examining the rest masses of the various particles also amounts to introducing many different inertial observation frames (which is prohibited if total system energy and momentum are to be conserved), and also when in the rest frame of one particle, this procedure ignores the momenta of other particles, which affect the system mass if the other particles are in motion in this frame.
For the special type of mass called invariant mass, changing the inertial frame of observation for a whole closed system has no effect on the measure of invariant mass of the system, which remains both conserved and invariant (unchanging), even for different observers who view the entire system. Invariant mass is a system combination of energy and momentum, which is invariant for any observer, because in any inertial frame, the energies and momenta of the various particles always add to the same quantity (the momentum may be negative, so the addition amounts to a subtraction). The invariant mass is the relativistic mass of the system when viewed in the center of momentum frame. It is the minimum mass which a system may exhibit, as viewed from all possible inertial frames.
The conservation of both relativistic and invariant mass applies even to systems of particles created by pair production, where energy for new particles may come from kinetic energy of other particles, or from one or more photons as part of a system that includes other particles besides a photon. Again, neither the relativistic nor the invariant mass of totally closed (that is, isolated) systems changes when new particles are created. However, different inertial observers will disagree on the value of this conserved mass, if it is the relativistic mass (i.e., relativistic mass is conserved by not invariant). However, all observers agree on the value of the conserved mass if the mass being measured is the invariant mass (i.e., invariant mass is both conserved and invariant).
The mass-energy equivalence formula gives a different prediction in non-isolated systems, since if energy is allowed to escape a system, both relativistic mass and invariant mass will escape also. In this case, the mass-energy equivalence formula predicts that the *change* in mass of a system is associated
with the *change* in its energy due to energy being added or subtracted: {\displaystyle \Delta m=\Delta E/c^{2}.} This form involving changes was the form in which this famous equation was originally presented by Einstein. In this sense, mass changes in any system are explained simply if the mass of the energy added or removed from the system, are taken into account.
The formula implies that bound systems have an invariant mass (rest mass for the system) less than the sum of their parts, if the binding energy has been allowed to escape the system after the system has been bound. This may happen by converting system potential energy into some other kind of active energy, such as kinetic energy or photons, which easily escape a bound system. The difference in system masses, called a mass defect, is a measure of the binding energy in bound systems – in other words, the energy needed to break the system apart. The greater the mass defect, the larger the binding energy. The binding energy (which itself has mass) must be released (as light or heat) when the parts combine to form the bound system, and this is the reason the mass of the bound system decreases when the energy leaves the system.^{ } The total invariant mass is actually conserved, when the mass of the binding energy that has escaped, is taken into account.
**Достарыңызбен бөлісу:** |